#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 20 09:19:42 2024 @author: jdaniel """ from matplotlib import pyplot as plt import numpy as np import pandas as pd plt.rcParams["font.family"] = "Arial" #plt.rcParams["font.family"] = "HelveticaNeue" def makefig1(kernel): #Figure 1 fact = (1.-.1)/100 #account for fact that solvent use is removed from kernel fig, ax1 = plt.subplots(figsize=(5,2.5), dpi=300) plt.plot(kernel.cprodemiss[0,:]*100,color='red') plt.plot(kernel.cinstallemiss[0,:]/fact,color='orange') plt.plot(kernel.cactiveemiss[0,:]/fact,color='yellow') plt.plot(kernel.cinactiveemiss[0,:]/fact,color='grey') plt.plot(kernel.cdecomemiss[0,:]/fact,color='blue') plt.xlim(0,75); plt.ylim(0,20) plt.title('Cumulative Emission'); plt.ylabel('Gg'); plt.xlabel('Year After Production') ax1.tick_params(axis='both', direction='in', top=True, right=True) ax1.tick_params(axis='x', pad = 5) plt.savefig('figure1.png',bbox_inches='tight') plt.savefig('figure1.pdf',bbox_inches='tight') plt.show() def getRange(ibot,itop,numyears,resultsmc,attrUse): tmparr = np.zeros([len(resultsmc),numyears]) a, b = np.zeros(numyears), np.zeros(numyears) for i in range(0,len(resultsmc)): tmparr[i,:] = np.sum(getattr(resultsmc[i],attrUse),axis=0) for i in range(0,numyears): tmp = np.sort(tmparr[:,i]) a[i] = tmp[ibot] b[i] = tmp[itop] return(a,b) def getOABank(): file = '/Users/jdaniel/new/OA_banks_30Jun.xlsx' fileinfo = pd.read_excel(file,header=0) s = np.shape(fileinfo) bank = np.zeros(s) bank[:,:] = fileinfo.loc[:,:] return(bank) def getLickley(): file1 = '/Users/jdaniel/new/lickley_low.txt' file2 = '/Users/jdaniel/new/lickley_high.txt' fileinfo1 = pd.read_csv(file1, sep='\s+', header=None) fileinfo2 = pd.read_csv(file2, sep='\s+', header=None) s_low = np.shape(fileinfo1) s_high = np.shape(fileinfo2) low = np.zeros(s_low) high = np.zeros(s_high) low[:] = fileinfo1.iloc[:,:] high[:] = fileinfo2.iloc[:,:] highout = np.interp(low[:,0],high[:,0],high[:,1]) return(low,highout) def getWestern(): file = 'HCFC-141b_Global_annual_emissions.xlsx' sheet1, sheet2 = 'AGAGE','NOAA' fileinfo1 = pd.read_excel(file,sheet_name=sheet1,header=12) fileinfo2 = pd.read_excel(file,sheet_name=sheet2,header=12) s_agage = np.shape(fileinfo1) s_noaa = np.shape(fileinfo2) print(s_agage) w_agage = np.zeros(s_agage) w_noaa = np.zeros(s_noaa) w_agage[:] = fileinfo1.iloc[:,:] w_noaa[:] = fileinfo2.iloc[:,:] print(np.shape(fileinfo1),np.shape(w_agage)) return(w_agage,w_noaa) def outputPresent(years,markets,regions,consump_bymarket,consump_bymarket_mc,results,resultsmc,weibull,weibullem): indexcheck = 20 dim = results.solventemiss.shape emissions = results.solventemiss+results.installemiss+results.activeemiss+results.decomemiss+results.inactiveemiss cemissions = results.csolventemiss+results.cinstallemiss+results.cactiveemiss+results.cdecomemiss+results.cinactiveemiss emcheck = np.sum(emissions[:,0:indexcheck-1]) cemcheck = np.sum(cemissions[:,indexcheck-1],axis=0) activebankcheck = np.sum(results.activebank[:,indexcheck],axis=0) inactivebankcheck = np.sum(results.inactivebank[:,indexcheck],axis=0) #Figure 2 fig = plt.figure(figsize=(4,3), dpi=300) ax1 = fig.add_subplot() cregion = np.sum(consump_bymarket,axis=2) cregion_total = np.sum(cregion,axis=0) v = np.zeros(len(cregion[:,0])) vold = np.zeros(len(cregion[:,0])) csorttmp = np.argsort(cregion_total) regname = np.copy(regions) regname[5], regname[6], regname[7] = 'Middle East/\nNorth Africa','North America','Northeast Asia' y1 = np.zeros(5) x1 = [2008,1994,1996,2006,2008] y1 = np.array([20000,30000,82000,62000,90000]) y1 = y1/1000. ctuple=[(1,0.,0.),(0,1,1),(.75,0,1.),(0,1,0),(1,.5,0),(1,1,0),(.5,.5,.5)] csort = csorttmp[::-1] for i in range(0,5): v = v + cregion[:,csort[i]] ax1.fill_between(years,vold/1000,v/1000,color=ctuple[i],alpha=.75) if (i != 4 and i !=2): plt.text(x1[i],y1[i],regname[csort[i]],fontsize=8) elif (i == 4): plt.annotate('Middle East/\nNorth Africa',fontsize=8,xy=(2011.2,95),xytext=(2014,110),\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) elif (i == 2): plt.text(x1[2],y1[2],'Europe\n+Japan',fontsize=8) vold = v ax1.fill_between(years,vold/1000,np.sum(cregion,axis=1)/1000,color=ctuple[5]) plt.text(2008,93,'Others',fontsize=8,rotation=45) plt.title('Annual Regional Consumption'),plt.xlabel('Year'),plt.ylabel('Gg/yr') plt.xlim([1989,2027]),plt.ylim([0,160]) plt.fill_between(years[34::],0,np.sum(np.sum(consump_bymarket[34::,:,:],axis=1),axis=1)/1000,color='white',hatch="||",edgecolor=(.1,.1,.1)) plt.annotate('Projection\n(NE Asia)',fontsize=8,xy=(2025.,8),xytext=(2022,70),\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,\ width=.3),horizontalalignment='center') ax1.tick_params(axis='both', direction='in', top=True, right=True) ax1.tick_params(axis='x', pad = 5) plt.savefig('figure3.png',bbox_inches='tight') plt.show() #Figure 3 plt.figure(figsize=(4,3), dpi=300) fig, ax1 = plt.subplots(figsize=(4,3), dpi=300) index=[5,0,10,3] index=[8,9,3] co = ['b','black','g','y'] wyears = np.zeros(len(weibull[0,:])) for i in range(0,len(weibull[0,:])): wyears[i] = i for i in range(0,len(index)): plt.plot(wyears,weibull[index[i],:],color=co[i]) plt.plot(wyears,np.cumsum(weibullem[index[i],:]),color=co[i],linestyle='dashed') plt.xlim([0,150]) plt.ylim([-.0,1]) plt.text(100,.49,'Block Pipe',fontsize=8) plt.text(100,.15,'Block Foam Slab',fontsize=8) plt.text(90,.27,'Discontinuous Panels',fontsize=8) plt.xlabel('Years After Installation'); plt.ylabel('Fraction of Installed Amount'); plt.title('Bank Remaining and Cumulative Emission') ax1.tick_params(axis='both', direction='in', top=True, right=True) ax1.tick_params(axis='x', pad = 5) plt.savefig('figure2.png',bbox_inches='tight') plt.show() # # Figure 4 fig = plt.figure(figsize=(4,3), dpi=300) fig, ax1 = plt.subplots(figsize=(4,3), dpi=300) c_market = np.sum(consump_bymarket,axis=1) v = np.zeros(len(consump_bymarket)) vold = np.zeros(len(consump_bymarket)) vtot = np.sum(c_market,axis=1)+.1 index = [5,0,7,4,3,11] for i in range(0,len(index)): v = v + c_market[:,index[i]] ax1.fill_between(years,vold/vtot,v/vtot,color=ctuple[i],alpha=.75) vold = v ax1.fill_between(years,vold/vtot,1,color=ctuple[6]) plt.title('HCFC-141b Markets') plt.ylabel('Fraction'); plt.xlabel('Year') plt.text(1994,.12,'Boardstock', fontsize=8) plt.text(1994,.31,'Domestic\nRefrigeration', fontsize=8) plt.text(2015,.13,'Pipe \nin Pipe', fontsize=8) plt.text(2014,.5,'Spray Foam', fontsize=8) plt.text(1995,.65,'Discontinuous Panels', fontsize=8) plt.text(1991,.78,'Continuous Panels', fontsize=8) plt.text(2000,.9,'Others', fontsize=8) plt.ylim([0,1.]); plt.xlim([1990,2021]) ax1.tick_params(axis='both', direction='in', top=True, right=True) ax1.tick_params(axis='x', pad = 5) plt.savefig('figure4.png',bbox_inches='tight') plt.show() #Figure 5 percentile = 0.165 #percentile = 0.025 plt.figure(figsize=(4,3), dpi=300) fig, ax = plt.subplots(figsize=(4,3), dpi=300) w_agage,w_noaa = getWestern() itop = int((1-percentile) * len(resultsmc)) ibot = int(percentile * len(resultsmc)) index1 = [0]*dim[1] index2 = [0]*dim[1] yrout = [0.]*dim[1] for i in range(0,dim[1]-1): index1[i]=i index2[i]=i+1 yrout[i] = years[0] + float(i) + .5 yrout[-1] = yrout[-2] + 1 attrUse = 'totalemiss' emisslow, emisshi = getRange(ibot,itop,dim[1],resultsmc,attrUse) plt.fill_between(yrout,emisslow/1000,emisshi/1000,color='black',alpha=.4) plt.fill_between(w_agage[:,2],w_agage[:,3]-w_agage[:,4],w_agage[:,3]+w_agage[:,4],color=(.7,0,.1),alpha=.5) plt.fill_between(w_noaa[:,2],w_noaa[:,3]-w_noaa[:,4],w_noaa[:,3]+w_noaa[:,4],color=(.1,.1,.7),alpha=.5) plt.plot(yrout,np.sum(resultsmc[0].totalemiss/1000,axis=0),color='black',linewidth = 2) plt.xlim([1990,2022]) plt.ylim([0,80]) plt.title('Annual Emission') plt.xlabel('Year') plt.ylabel('Emission (Gg/yr)') plt.fill_between([2000,2003],[20,20],[24,24],color='black',alpha=.4) plt.plot([2000,2003],[22,22],color='black') plt.text(2003.5,21,'This Work',fontsize=7) plt.fill_between([2000,2003],[14,14],[18,18],color=(.1,.1,.7),alpha=.5) plt.text(2003.5,15,'From NOAA, Western (2022)',fontsize=7) plt.fill_between([2000,2003],[8,8],[12,12],color=(.7,.0,.1),alpha=.5) plt.text(2003.5,9,'From AGAGE, Western (2022)',fontsize=7) ax.tick_params(axis='both', direction='in', top=True, right=True) ax.tick_params(axis='x', pad = 5) plt.savefig('figure5.png',bbox_inches='tight') plt.show() vals = np.zeros((len(resultsmc),200)) low1, hi1 = 1998, 2002 low2, hi2 = 2011, 2013 low3, hi3 = 2004, 2007 ir1 = np.where((w_agage[:,2] >= low1) & (w_agage[:,2] <= hi1)) ir2 = np.where((w_agage[:,2] >= low2) & (w_agage[:,2] <= hi2)) ir3 = np.where((w_agage[:,2] >= low3) & (w_agage[:,2] <= hi3)) sumlow1 = np.mean(w_agage[ir1,3]-w_agage[ir1,4]) sumlow2 = np.mean(w_agage[ir2,3]-w_agage[ir2,4]) sumlow3 = np.mean(w_agage[ir3,3]-w_agage[ir3,4]) sumhi1 = np.mean(w_agage[ir1,3]+w_agage[ir1,4]) sumhi2 = np.mean(w_agage[ir2,3]+w_agage[ir2,4]) sumhi3 = np.mean(w_agage[ir3,3]+w_agage[ir3,4]) is1 = np.where((years >= low1) & (years <= hi1)) is2 = np.where((years >= low2) & (years <= hi2)) is3 = np.where((years >= low3) & (years <= hi3)) iuse = []#np.array([]) for i in range(0,len(resultsmc)): vals[i,:] = np.sum(getattr(resultsmc[i],'totalemiss'),axis=0)/1000. vsum1, vsum2, vsum3 = np.mean(vals[i,is1]),np.mean(vals[i,is2]),\ np.mean(vals[i,is3]) if ((vsum1 >= sumlow1) & (vsum1 <= sumhi1) & (vsum2 >= sumlow2) & (vsum2 <= sumhi2) &\ (vsum3 >= sumlow3) & (vsum3 <= sumhi3)): iuse = np.append(iuse,[int(i)]) s = len(iuse) for i in range(0,len(iuse)): if (i == 0): iuseint = [int(iuse[i])] else: iuseint = np.append(iuseint,int(iuse[i])) #Figure 6 plt.figure(figsize=(4,3), dpi=300) fig, ax = plt.subplots(figsize=(4,3), dpi=300) fact=1000 a00 = (resultsmc[0].activebank[0,:])/fact a01 = a00 + (resultsmc[0].activebank[3,:])/fact a02 = a01 + (resultsmc[0].activebank[4,:])/fact a03 = a02 + (resultsmc[0].activebank[5,:])/fact a04 = a03 + (resultsmc[0].activebank[7,:])/fact plt.fill_between(yrout,0,a00,color=(.85,.85,.85)) plt.fill_between(yrout,a00,a01,color=(.75,.75,.75)) plt.fill_between(yrout,a01,a02,color=(.65,.65,.65)) plt.fill_between(yrout,a02,a03,color=(.55,.55,.55)) plt.fill_between(yrout,a03,a04,color=(.45,.45,.45)) a1 = np.sum(resultsmc[0].activebank,axis=0)/fact plt.fill_between(yrout,a04,a1,color=(.3,.3,.3)) a2 = np.sum(resultsmc[0].inactivebank,axis=0)/fact a3 = np.sum(resultsmc[0].cactiveemiss,axis=0)/fact a4 = np.sum(resultsmc[0].cinactiveemiss,axis=0)/fact+np.sum(resultsmc[0].cdecomemiss,axis=0)/fact a5 = np.sum(resultsmc[0].cinstallemiss,axis=0)/fact a6 = np.sum(resultsmc[0].csolventemiss,axis=0)/fact a7 = np.sum(resultsmc[0].cprodemiss,axis=0)/fact plt.fill_between(yrout,a1,a1+a2,color=(0,.7,.2),alpha=.8) plt.fill_between(yrout,a1+a2,a1+a2+a3,color=(.8,.8,0),alpha=.8) plt.fill_between(yrout,a1+a2+a3,a1+a2+a3+a4,color=(.8,0,0),alpha=.8) plt.fill_between(yrout,a1+a2+a3+a4,a1+a2+a3+a4+a5,color=(0.75,0,1.),alpha=.8) plt.fill_between(yrout,a1+a2+a3+a4+a5,a1+a2+a3+a4+a5+a6,color=(.9,.45,0),alpha=.7) plt.fill_between(yrout,a1+a2+a3+a4+a5+a6,a1+a2+a3+a4+a5+a6+a7,color=(0,.45,.9),alpha=.8) plt.xlim([1990,2050]), plt.ylim([0,3.1E+3]) plt.title('Life Cycle Evolution') plt.xlabel('Year'), plt.ylabel('Cumulative Emission, Bank (Gg)') plt.text(2005,50,'AB Domestic Refrig.',fontsize=7) plt.text(2020,375,'AB Spray Foam',fontsize=7,rotation=-12) plt.text(2025,30,'AB Discontinuous Panels',fontsize=7,rotation=-5) plt.text(2002,620,'Active Bank (AB) Other',fontsize=7,rotation=30,color='white') plt.text(2020,680,'AB Pipe-in-Pipe', fontsize=7,rotation=-20) plt.text(2003,460,'AB Boardstock', fontsize=7,rotation=25) plt.text(2030,1100,'Inactive Bank',fontsize=7) plt.text(2030,1660,'Active Bank Emission',fontsize=7) plt.text(2049.5,1900,'Decommissioning and Inactive\nBank Emissions',fontsize=7,horizontalalignment='right') plt.text(2030,2300,'Installation Emission',fontsize=7) plt.text(2030,2680,'Solvent Emission',fontsize=7) plt.text(2030,2900,'Production Emission',fontsize=7) ax.tick_params(axis='y', direction='in', right=True) plt.savefig('figure6.png',bbox_inches='tight') plt.show() for j in range(0,len(markets)): akeep = np.zeros((len(iuse),200)) for i in range(0,len(iuse)): ii = int(iuse[i]) a1 = resultsmc[ii].activebank[j,:]/fact akeep[i,:] = a1 activekeep = np.zeros((len(resultsmc),200)) inactivekeep = np.copy(activekeep) for i in range(0,len(resultsmc)): activekeep[i,:] = np.sum(resultsmc[i].activebank,axis=0)/fact inactivekeep[i,:] = np.sum(resultsmc[i].inactivebank,axis=0)/fact ii = np.where(np.min(activekeep,axis=1) < 0) jj = np.where(np.min(inactivekeep,axis=1) < 0) print('Indices when active bank is negative') print(ii,np.shape(ii)) print('Indices when inactive bank is negative') print(jj,np.shape(jj)) print(inactivekeep[jj]) kk = np.where(activekeep < 0) print(kk,np.shape(kk)) #Figure 7 percentile = 0.05/2 # percentile = .165 itop = int((1-percentile) * len(resultsmc)) ibot = int(percentile * len(resultsmc)) fig, (ax,ax2) = plt.subplots(2,1,figsize=(4,6), dpi=300, constrained_layout=True) ax = plt.subplot2grid((5,1),(0,0),rowspan=3) ax2 = plt.subplot2grid((5,1),(3,0),rowspan=2) lickley_low, lickley_high = getLickley() OA_bank = getOABank() attrUse = 'activebank' activearraybot, activearraytop = getRange(ibot,itop,dim[1],resultsmc,attrUse) attrUse = 'totalbank' inactivearraybot, inactivearraytop = getRange(ibot,itop,dim[1],resultsmc,attrUse) ax.plot(yrout,np.sum(resultsmc[0].activebank/1000,axis=0),color='orange') tmpbank = np.sum(resultsmc[0].activebank/1000,axis=0)+np.sum(resultsmc[0].inactivebank/1000,axis=0) ax.plot(yrout,tmpbank,color='black') ax.fill_between(yrout,inactivearraybot/1000,inactivearraytop/1000,alpha=.5,color='black') ax.fill_between(yrout,activearraybot/1000,activearraytop/1000,alpha=.5,color='orange') ax.fill_between(lickley_low[:,0],lickley_low[:,1],lickley_high,alpha=.3) ax.plot(OA_bank[70::,0],OA_bank[70::,7]/1000,color='blue') ax.set_xlim([1990,2050]); ax.set_title('Bank Sizes') ax.text(1991,1870,"(a)", weight = 'bold') ax2.text(1991,1110,"(b)", weight = 'bold') ax.set_ylim([0,2000]) ax.set_ylabel('Bank Size (Gg)') ax.annotate('Active Bank\nThis Work',fontsize=8,xy=(2025,1170),xytext=(2022,750),horizontalalignment='right',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) ax.annotate('Total Bank\nThis Work',fontsize=8,xy=(2045,1450),xytext=(2040,1800),horizontalalignment='center',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) ax.annotate('Total Bank,\nLickley et al. (2022)',fontsize=8,xy=(2015,1800),xytext=(2000,1600),horizontalalignment='center',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) ax.annotate('Total Bank\nWMO (2022)',fontsize=8,xy=(2045,825),xytext=(2040.,300),horizontalalignment='right',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) ax.tick_params(axis='both', direction='in', top=True, right=True) ax.tick_params(axis='x', pad = 5) print(iuse,np.shape(iuse)) tmp = np.zeros([len(iuse),len(resultsmc[0].activebank[0,:])]) tmp1 = np.zeros([len(iuse),len(resultsmc[0].activebank[0,:])]) tmp2 = np.zeros([len(iuse),len(resultsmc[0].inactivebank[0,:])]) for i in range(0,len(iuse)): tmp[i,:] = np.sum(resultsmc[iuseint[i]].activebank,axis=0)/1000+\ np.sum(resultsmc[iuseint[i]].inactivebank,axis=0)/1000 tmp1[i,:] = np.sum(resultsmc[iuseint[i]].activebank,axis=0)/1000 tmp2[i,:] = np.sum(resultsmc[iuseint[i]].inactivebank,axis=0)/1000 print('Total Bank numbers in 2020: %12.2f %12.2f%12.2f' % (np.mean(tmp[:,31]),tmpbank[31],OA_bank[70,7]/1000)) ax.plot(yrout,np.mean(tmp,axis=0),color='lightgrey') ax.plot(yrout,np.mean(tmp1,axis=0),color='lightgrey') ax2.plot(yrout,np.mean(tmp2,axis=0),color='lightgrey') attrUse = 'inactivebank' inactivearraybot, inactivearraytop = getRange(ibot,itop,dim[1],resultsmc,attrUse) ax2.plot(yrout,np.sum(resultsmc[0].inactivebank/1000,axis=0),color='black') ax2.fill_between(yrout,inactivearraybot/1000,inactivearraytop/1000,alpha=.5,color='black') ax2.set_xlim(1990,2050);ax2.set_ylim(0,1200) ax2.tick_params(axis='both', direction='in', top=True, right=True) ax2.tick_params(axis='x', pad = 5) ax2.set_ylabel('Bank Size (Gg)') ax2.set_xlabel('Year') ax2.annotate('Only Incl. "accurate"\nEmission Pathways',fontsize=8,xy=(2045,750),xytext=(2043.,200),horizontalalignment='right',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) ax2.annotate('Inactive Bank\nThis Work',fontsize=8,xy=(2032,800),xytext=(2017.,1000),horizontalalignment='right',\ arrowprops=dict(color='black',headwidth=3.5,headlength=2,shrink=.01,width=.3)) plt.savefig('figure7.png',bbox_inches='tight') plt.show() return(iuseint)