pro make_tropical_co2_time_series ;dir = '~/Work/Data/' dir = '/Volumes/Data_Gator/Data/Surface_Trace_Gas/' ; Read in GMD marine boundary layer data for CO2 from https://gml.noaa.gov/ccgg/obspack/our_products.php. dat = read_ascii(dir+'CO2/CO2_mbl_17S-17N.txt',data_start=76) co2_mbl_time = reform(dat.field1[3,*]) co2_mbl_tropics = reform(dat.field1[4,*]) nt_bl = n_elements(co2_mbl_time) dat = read_ascii(dir+'CO2/CO2_mbl_30S-30N.txt',data_start=76) co2_mbl_time2 = reform(dat.field1[3,*]) co2_mbl_tropics2 = reform(dat.field1[4,*]) ; Read in Scripps Mauna Loa CO2. mlo_scr_co2_all = read_ascii(dir+'CO2/co2_scripps_monthly_mlo.txt',data_start=57,delimiter=',') mlo_scr_years = reform(mlo_scr_co2_all.field01[3,*]) mlo_scr_co2 = reform(mlo_scr_co2_all.field01[8,*]) mlo_scr_co2[0:1] = mlo_scr_co2[12:13] - 0.8 mlo_scr_co2[where(mlo_scr_co2 lt 0)] = !values.f_nan ; Read in the CMIP6 surface time series. dat = read_ascii(dir+'CMIP6_surface_tracer_time_series.txt',data_start=22) cmip_time = reform(dat.field01[0,*]) + 0.5 cmip_co2 = reform(dat.field01[1,*]) ; Read in Engel and Boenisch CO2. co2_frankfurt = read_ascii(dir+'Unified_CO2_TTM_GLOBALVIEW.naf',data_start=43) years_co2_frnk = reform(co2_frankfurt.field1[0,*]) co2_frnk = reform(co2_frankfurt.field1[1,*]) ; Read in Engel and Boenisch CO2 updated. co2_frankfurt = read_ascii(dir+'Unified_CO2_TropMean_2017.naf',data_start=39) years_co2_frnk_new = reform(co2_frankfurt.field1[0,*]) co2_frnk_new = reform(co2_frankfurt.field1[1,*]) ti = where(years_co2_frnk_new le co2_mbl_time[0]) tropical_co2_time_o = [years_co2_frnk_new[ti],co2_mbl_time] ;tropical_co2_o = [co2_frnk_new[ti],co2_mbl_tropics] tropical_co2_o = [co2_frnk_new[ti],co2_mbl_tropics2] ; Read in latitude averaged mbl data from https://gml.noaa.gov/ccgg/mbl/. ny = 14 lat_grid_co2 = indgen(ny)*10 - 60 co2_mbl_tropics_lat = fltarr(nt_bl,ny) & ratio = co2_mbl_tropics_lat & ratio_seas = fltarr(12,ny) for y = 0, ny-1 do begin if lat_grid_co2[y] lt 0 then hem = 'S' else hem = 'N' lat_string = strcompress(string(abs(lat_grid_co2[y])),/r)+hem dat = read_ascii(dir+'CO2/CO2_mbl_'+lat_string+'.txt',data_start=76) co2_mbl_time = reform(dat.field1[3,*]) co2_mbl_tropics_lat[*,y] = reform(dat.field1[4,*]) ; ratio[*,y] = co2_mbl_tropics_lat[*,y] / co2_mbl_tropics ratio[*,y] = co2_mbl_tropics_lat[*,y] / co2_mbl_tropics2 mon_fracs = co2_mbl_time - fix(co2_mbl_time) for t = 0., 11. do begin ti = where(mon_fracs ge t/12. and mon_fracs lt (t+1)/12.,nti) if nti gt 0 then ratio_seas[t,y] = mean(ratio[ti,y]) endfor endfor ; Make extended tropical mean CO2 time series based on Globalview and MLO data. ti = interpol(indgen(n_elements(mlo_scr_years)),mlo_scr_years,co2_mbl_time) mlo_scr_co2_interp = interpolate(mlo_scr_co2,ti) mlo_scr_years_interp = interpolate(mlo_scr_years,ti) ;ratio = co2_mbl_tropics/mlo_scr_co2_interp ratio = co2_mbl_tropics2/mlo_scr_co2_interp seasonal_co2_ratio = fltarr(48) for t = 0, 47 do seasonal_co2_ratio[t] = mean(ratio[indgen(n_elements(ratio)/48)*48+t],/nan) seasonal_co2_ratio_tseries = fltarr(n_elements(ratio)) for t = 0, n_elements(ratio)-1 do seasonal_co2_ratio_tseries[t] = seasonal_co2_ratio[t mod 48] gd = where(finite(ratio) and finite(seasonal_co2_ratio_tseries)) ratio_trend = linfit(co2_mbl_time[gd],ratio[gd]-seasonal_co2_ratio_tseries[gd],chisqr=chisqr,yfit=yfit_ratio_trend,sigma=sigma) seasonal_plus_trend_co2_ratio_tseries = seasonal_co2_ratio_tseries + yfit_ratio_trend seasonal_co2_ratio_tseries_extend = [seasonal_co2_ratio_tseries,seasonal_co2_ratio_tseries,seasonal_co2_ratio_tseries[0:95]] seasonal_co2_ratio_tseries_extend_time = [co2_mbl_time-32,co2_mbl_time,co2_mbl_time[0:95]+32] yfit_ratio_trend_extend = ratio_trend[0] + ratio_trend[1]*seasonal_co2_ratio_tseries_extend_time seasonal_plus_trend_co2_ratio_tseries_extend = seasonal_co2_ratio_tseries_extend + yfit_ratio_trend_extend ti = interpol(indgen(n_elements(seasonal_co2_ratio_tseries_extend_time)),seasonal_co2_ratio_tseries_extend_time,mlo_scr_years) ;tropical_co2_tseries = interpolate(seasonal_plus_trend_co2_ratio_tseries_extend,ti) * co2_mbl_tropics tropical_co2_tseries = interpolate(seasonal_plus_trend_co2_ratio_tseries_extend,ti) * co2_mbl_tropics2 ; ;; Get the fit to the long term variability to extend back in time. ;co2_fit = poly_fit(co2_mbl_time[where(tropical_co2_tseries gt 0)],tropical_co2_tseries[where(tropical_co2_tseries gt 0)],2) ;co2_fit_plot = co2_fit[2]*co2_mbl_time^2 + co2_fit[1]*co2_mbl_time + co2_fit[0] ; Get the fit to the long term variability to extend back in time. co2_fit = poly_fit(tropical_co2_time_o,tropical_co2_o,2) co2_fit_plot = co2_fit[2]*tropical_co2_time_o^2 + co2_fit[1]*tropical_co2_time_o + co2_fit[0] ; Get the seasonal cycle of the tropical time series to use to extend further back in time. tropical_seasonal_co2 = fltarr(12) co2_detrend = tropical_co2_o - co2_fit_plot for t = 0, 11 do begin ti = where(tropical_co2_time_o-fix(tropical_co2_time_o) ge t/12. and tropical_co2_time_o-fix(tropical_co2_time_o) lt (t+1.)/12.) tropical_seasonal_co2[t] = mean(tropical_co2_o[ti] - co2_fit_plot[ti]) endfor ;for t = 0, 11 do tropical_seasonal_co2[t] = mean(co2_detrend[indgen(n_elements(co2_detrend)/12)*12+t],/nan) print,tropical_seasonal_co2 tropical_seasonal_co2_tseries = fltarr(n_elements(tropical_co2_time_o)) for t = 0, n_elements(tropical_co2_time_o)-1 do tropical_seasonal_co2_tseries[t] = tropical_seasonal_co2[t mod 12] time_early = findgen(228)*(1./12.)+1939+(1./24.) ;co2_trend_early = co2_fit[2]*time_early^2 + co2_fit[1]*time_early + co2_fit[0] ;tropical_co2_early = fltarr(n_elements(time_early)) ;for t = 0, n_elements(time_early)-1 do tropical_co2_early[t] = co2_trend_early[t] + tropical_seasonal_co2[t mod 12] ti_e = interpol(indgen(n_elements(cmip_time)),cmip_time,time_early) tropical_co2_early = interpolate(cmip_co2,ti_e) for t = 0, n_elements(time_early)-1 do tropical_co2_early[t] += tropical_seasonal_co2[t mod 12] ; Extend the time series back to 1939. tropical_co2_time_init = [time_early,tropical_co2_time_o] tropical_co2_init = [tropical_co2_early,tropical_co2_o] ;; Get the seasonal cycle of the tropical time series to use to extend further back in time. ;tropical_seasonal_co2 = fltarr(12) ;co2_detrend = tropical_co2_tseries - co2_fit_plot ;for t = 0, 11 do tropical_seasonal_co2[t] = mean(co2_detrend[indgen(n_elements(co2_detrend)/12)*12+t],/nan) ; ;tropical_seasonal_co2_tseries = fltarr(n_elements(co2_mbl_time)) ;for t = 0, n_elements(co2_mbl_time)-1 do tropical_seasonal_co2_tseries[t] = tropical_seasonal_co2[t mod 12] ; ;time_early = findgen(228)*(1./12.)+1939+(1./24.) ;co2_trend_early = co2_fit[2]*time_early^2 + co2_fit[1]*time_early + co2_fit[0] ;tropical_co2_early = fltarr(n_elements(time_early)) ;for t = 0, n_elements(time_early)-1 do tropical_co2_early[t] = co2_trend_early[t] + tropical_seasonal_co2[t mod 12] ; ;; Extend the time series back to 1939. ;tropical_co2_time = [time_early,co2_mbl_time] ;tropical_co2 = [tropical_co2_early,tropical_co2_tseries] co2_m = read_ascii(dir+'CO2/CO2_mlo_monthly.txt',data_start=70) yrs_m = reform(co2_m.field1[1,*]) mons_m = reform(co2_m.field1[2,*]) years_mlo = float(yrs_m) + float(mons_m-1)/12. + 1./24. co2_mlo = reform(co2_m.field1[3,*]) co2_s = read_ascii(dir+'CO2/CO2_smo_monthly.txt',data_start=70) yrs_s = reform(co2_s.field1[1,*]) mons_s = reform(co2_s.field1[2,*]) co2_smo = reform(co2_s.field1[3,*]) years_smo = float(yrs_s) + float(mons_s-1)/12. + 1./24. ti = where(years_smo ge years_mlo[0]) years_sm = years_mlo co2_sm = 0.5 * (co2_mlo + co2_smo[ti]) print,years_sm[0],years_sm[-1] ti = where(years_co2_frnk le co2_mbl_time[0]) tropical_co2_time_o = [years_co2_frnk[ti],co2_mbl_time] ;tropical_co2_o = [co2_frnk[ti],co2_mbl_tropics] tropical_co2_o = [co2_frnk[ti],co2_mbl_tropics2] ; Use 30S-30N for tropical average. nt = round((2024.62 - 1945.) * 12. + 1) dyear = 1./12 tropical_co2_time = findgen(nt) * dyear + 1945 + 1./24 ;nt = (tropical_co2_time_o[-1] - tropical_co2_time_o[0]) * 12. + 1 ;tropical_co2_time = findgen(nt) * 1./12. + tropical_co2_time_o[0] tropical_co2_lat = fltarr(nt,ny) co2_mbl_17S_17N = fltarr(nt) & co2_mbl_30S_30N = co2_mbl_17S_17N tii = interpol(indgen(n_elements(tropical_co2_time_init)),tropical_co2_time_init,tropical_co2_time) tropical_co2 = interpolate(tropical_co2_init,tii) ;tii = interpol(indgen(n_elements(tropical_co2_time_o)),tropical_co2_time_o,tropical_co2_time) ;tropical_co2_1 = interpolate(tropical_co2_o,tii) ; ;tii = interpol(indgen(n_elements(years_sm)),years_sm,tropical_co2_time) ;tropical_co2 = interpolate(co2_sm,tii) tropical_co2_sm = smooth(tropical_co2,48,/edge_truncate) deriv_yr = 12*sg_smooth(tropical_co2_sm, NLEFT=12/2, NRIGHT=12/2-1, DERIV=1, DELTA=1.0, EDGE_PFCAST=1) co2_gr = 100 * deriv_yr / tropical_co2_sm co2_gr_avg = mean(co2_gr[-120:-24]) tii = where(tropical_co2_time gt tropical_co2_time_o[-1],nn) for t = 0, nn-1 do tropical_co2[tii[t]] = (1. + 1e-2*co2_gr_avg) * tropical_co2[tii[t]-12] ; Extend latitudinal time series backward using seasonal cycle ratios. ti = where(tropical_co2_time lt co2_mbl_time[0],nti) ti2 = where(tropical_co2_time ge co2_mbl_time[0],nti2) tii2 = interpol(indgen(n_elements(co2_mbl_time)),co2_mbl_time,tropical_co2_time[ti2]) ti3 = where(tropical_co2_time ge tropical_co2_time_o[-1],nti3) for y = 0, ny-1 do begin for t = 0, nti-1 do tropical_co2_lat[t,y] = ratio_seas[t mod 12,y] * tropical_co2[t] tropical_co2_lat[ti2,y] = interpolate(co2_mbl_tropics_lat[*,y],tii2) if nti3 gt 0 then for t = 0, nti3-1 do tropical_co2_lat[ti3[t],y] = (1. + 1e-2*co2_gr_avg) * tropical_co2_lat[ti3[t]-12,y] co2_mbl_17S_17N[ti2] = interpolate(co2_mbl_tropics,tii2) co2_mbl_30S_30N[ti2] = interpolate(co2_mbl_tropics2,tii2) endfor save,tropical_co2_time,tropical_co2,years_co2_frnk,co2_frnk,tropical_co2_lat,lat_grid_co2,filename=dir+'CO2_tropical_time_series.sav' ;restore,dir+'Surface_Trace_Gas/SF6_tropical_time_series.sav' ; Read in Andrews CO2. co2_a = read_ascii(dir+'Andrews_CO2_MLO-SMO.txt') years_co2_a = reform(co2_a.field1[0,*]) co2_andr = reform(co2_a.field1[1,*]) co2_fa = read_ascii(dir+'Andrews_full_CO2_MLO-SMO.txt') years_co2_fa = reform(co2_fa.field1[0,*]) co2_fandr = reform(co2_fa.field1[1,*]) tii2 = interpol(indgen(n_elements(years_co2_fa)),years_co2_fa,tropical_co2_time[where(tropical_co2_time ge years_co2_fa[0] and tropical_co2_time ge years_co2_fa[-1])]) co2_time = tropical_co2_time gd = where(co2_time ge 1945,ngd) co2_tropics = tropical_co2 ; Write out CO2 in a text file. ;openw,1,dir+'CO2_tropical_surface_time_series.txt' ;printf,1,'Tropical CO2 mixing ratios' ;printf,1,'1945-1958: Extension back in time based on CMIP6 historical data (Meinshausen et al., 2017). ;printf,1,'1958-1979: Based on Mauna Loa. ;printf,1,'1979-2023: MBL data set from NOAA (https://gml.noaa.gov/ccgg/mbl/). ;printf,1 ;printf,1,' Year CO2 (ppm)' ;for t = 0, ngd-1 do printf,1,co2_time[gd[t]],co2_tropics[gd[t]],format='(2F13.3)' ;close,1 colors = ['sky blue','blue','purple','brown','pink','orange','red','lime green','green','tan','gold','medium orchid','lavender','grey'] ;p = plot(indgen(2),/nodata,xrange=[1945,2025],yrange=[300,425]) ;p = plot(co2_time,co2_tropics,thick=2,color='orange',/overplot) ;p = plot(cmip_time,cmip_co2,symbol='o',color='red',linestyle=6,/overplot) ;p = plot(indgen(2),/nodata,xrange=[1945,2025],yrange=[300,420]) ;;p = plot(mlo_scr_years,mlo_scr_co2,thick=2,color='gold',/overplot) ;;p = plot(years_co2_frnk,co2_frnk,thick=2,color='green',/overplot) ;p = plot(years_co2_frnk_new,co2_frnk_new,thick=2,color='lime green',/overplot) ;;p = plot(co2_mbl_time,co2_mbl_tropics,thick=2,color='blue',/overplot) ;;p = plot(tropical_co2_time_o,tropical_co2_o,thick=2,color='orange',/overplot) ;;p = plot(tropical_co2_time_o,co2_fit_plot,thick=2,color='sky blue',/overplot) ;;p = plot(time_early,co2_trend_early,thick=2,color='pink',/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='red',/overplot) ;p = plot(time_early,tropical_co2_early,thick=2,color='magenta',/overplot) ;p = plot(indgen(2),/nodata,xrange=[2012,2024],yrange=[380,415]) ;for y = 0, ny-1 do p = plot(co2_mbl_time,ratio[*,y],thick=2,color=colors[y],/overplot) ;p = plot(indgen(2),/nodata) ;for y = 0, ny-1 do p = plot(indgen(12),ratio_seas[*,y],thick=2,color=colors[y],/overplot) p = plot(indgen(2),/nodata,xrange=[2015,2025],yrange=[395,430]) p = plot(tropical_co2_time,tropical_co2,thick=2,color='orange',/overplot) ;p = plot(tropical_co2_time,tropical_co2_1,thick=2,color='green',/overplot) ;p = plot(years_co2_fa,co2_fandr,thick=2,color='blue',/overplot) ;p = plot(tropical_co2_time,tropical_co2_lat[*,4],color='blue',thick=2,/overplot) for y = 0, ny-1 do p = plot(tropical_co2_time,tropical_co2_lat[*,y],color=colors[y],/overplot) ;p = plot(indgen(2),/nodata,xrange=[1994,1996],xtickinterval=1,xminor=11,xticklen=1,yticklen=1,yrange=[355,363]) ;;p = plot(years_mlo,co2_mlo,thick=2,color='green',/overplot) ;;p = plot(years_smo,co2_smo,thick=2,color='lime green',/overplot) ;p = plot(years_sm,co2_sm,thick=2,color='magenta',/overplot) ;;p = plot(shift(years_sm,2),co2_sm,thick=2,color='red',/overplot) ;;p = plot(years_co2_fa,co2_fandr,thick=2,color='blue',/overplot) ;;p = plot(shift(years_sm,2),smooth(co2_sm,12),thick=3,color='orange',/overplot) ;;p = plot(years_co2_a,co2_andr,thick=3,color='purple',/overplot) ;;p = plot(tropical_co2_time,smooth(tropical_co2_lat[*,3],12),color='magenta',thick=3,/overplot) ;;p = plot(co2_mbl_time2,co2_mbl_tropics2,thick=2,color='red',linestyle=2,/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='red',/overplot) ;for y = 0, ny/2-1 do p = plot(tropical_co2_time,tropical_co2_lat[*,y],color=colors[y],/overplot) ;p = plot(indgen(2),/nodata,xrange=[1987,2005],yrange=[346,375]) ;;p = plot(shift(years_sm,2),lowpass_cfc(co2_sm, BOX=12, EDGE_PFCAST=1),thick=2,color='orange',/overplot) ;;p = plot(tropical_co2_time,lowpass_cfc(tropical_co2_lat[*,4], BOX=12, EDGE_PFCAST=1),color='blue',thick=2,/overplot) ;;p = plot(tropical_co2_time,lowpass_cfc(tropical_co2_lat[*,3], BOX=12, EDGE_PFCAST=1),color='magenta',thick=2,/overplot) ;p = plot(tropical_co2_time,lowpass_cfc(co2_mbl_17S_17N, BOX=12, EDGE_PFCAST=1),thick=2,color='red',/overplot) ;p = plot(tropical_co2_time,lowpass_cfc(co2_mbl_30S_30N, BOX=12, EDGE_PFCAST=1),thick=2,color='green',/overplot) ;p = plot(years_co2_a,co2_andr,thick=3,color='purple',/overplot) ;p = plot(indgen(2),/nodata,xrange=[1985,2000],yrange=[343,370]) ;p = plot(tropical_co2_time,smooth(tropical_co2,12),thick=2,color='magenta',/overplot) ;p = plot(tropical_co2_time,smooth(tropical_co2_lat[*,4],12),color='blue',thick=2,/overplot) ;p = plot(years_co2_a,co2_andr,thick=2,color='red',/overplot) ;p = plot(years_co2_frnk,smooth(co2_frnk,12),thick=2,color='orange',/overplot) ;p = plot(indgen(2),/nodata,xrange=[1990,1995],yrange=[348,365]) ;for y = 0, ny-1 do p = plot(tropical_co2_time,tropical_co2_lat[*,y],color=colors[y],/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='magenta',/overplot) ;p = plot(indgen(2),/nodata,xrange=[1940,2023],yrange=[300,420]) ;;p = plot(mlo_scr_years_interp,mlo_scr_co2_interp,thick=2,color='sky blue',/overplot) ;;p = plot(mlo_scr_years,mlo_scr_co2,thick=2,color='gold',/overplot) ;p = plot(co2_mbl_time,co2_mbl_tropics,thick=2,color='blue',/overplot) ;p = plot(years_co2_frnk,co2_frnk,thick=2,color='orange',/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='magenta',/overplot) ;p = plot(tropical_co2_early,time_early,thick=2,color='pink',/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='blue',xrange=[1940,2023],yrange=[315,420]) ;p = plot(co2_mbl_time,ratio,thick=2,color='red') ;p = plot(co2_mbl_time,seasonal_co2_ratio_tseries,thick=2,color='orange',/overplot) ;p = plot(seasonal_co2_ratio_tseries_extend_time,seasonal_co2_ratio_tseries_extend,thick=2,color='gold',/overplot) leftmargin = 0.12 & rightmargin = 0.03 & botmargin = 0.07 & topmargin = 0.07 & buffer = 0.03 ;pos = plot_position(1,2,1,leftmargin,botmargin,buffer,topmargin=topmargin,rightmargin=rightmargin,ytitle=leftcol,/newwin,windim=[450,500]) ;txt = text(0.5,0.96,'Tropical tropopause tracer time series',/normal,alignment=0.5,font_size=13) ;pos = plot_position(1,2,1,leftmargin,botmargin,buffer,topmargin=topmargin,rightmargin=rightmargin,toprow=toprow,ytitle=leftcol,xtitle=botrow) ;p = plot(indgen(2),xrange=[1965,2013],yrange=[0,8],ytitle='ppt',xtickfont_size=0,position=pos,/current) ;p = plot(sf6_time,sf6_frnk_interp,thick=3,color='orange',/overplot) ;p = plot(sf6_time,sf6_tropics,thick=3,color='blue',/overplot) ;t = text(0.7,0.56,'Engel et al 2009',color='orange',/norm) ;t = text(0.7,0.6,'This study',color='blue',/norm) ;t = text(0.25,0.85,'SF$_6$',/norm,alignment=0.5) ;pos = plot_position(1,2,2,leftmargin,botmargin,buffer,topmargin=topmargin,rightmargin=rightmargin,toprow=toprow,ytitle=leftcol,xtitle=botrow) ;p = plot(indgen(2),xrange=[1965,2017],yrange=[315,410],ytitle='ppmv',position=pos,/current) ;p = plot(years_co2_frnk,co2_frnk,thick=2,color='orange',/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='blue',/overplot) ;t = text(0.25,0.4,'CO$_2$',/norm,alignment=0.5) ;p.save,'~/Dropbox/Work/Journal Articles/Mine/TLP Age paper/tpause_time_series.png' ;p = plot(indgen(2),xrange=[1965,2017],yrange=[315,410],ytitle='ppmv',title='Tropical Tropopause CO$_2$') ;p = plot(years_co2_frnk,co2_frnk,thick=2,color='orange',/overplot) ;p = plot(tropical_co2_time,tropical_co2,thick=2,color='blue',/overplot) ;t = text(0.2,0.76,'Engel et al 2009',color='orange',/norm) ;t = text(0.2,0.8,'This study',color='blue',/norm) ;p.save,'~/Dropbox/Work/Journal Articles/Mine/TLP Age paper/CO2_time_series.png' ;p = plot(mlo_scr_years,mlo_scr_co2,thick=2,color='blue',yrange=[295,400]) ;;p = plot(mlo_scr_years_interp,mlo_scr_co2_interp,thick=2,color='green',/overplot) ;;;p = plot(mlo_years,mlo_co2,thick=2,color='red',/overplot) ;p = plot(co2_gv_time,co2_gv_tropics,thick=2,color='orange',/overplot) ;p = plot(co2_mbl_time,co2_mbl_tropics,thick=2,color='red',/overplot) ;p = plot(mlo_scr_years,tropical_co2_tseries,thick=2,color='red',/overplot) ;p = plot(mlo_scr_years,co2_fit_plot,thick=2,color='sky blue',/overplot) ;p = plot(time_early,tropical_co2_early,thick=2,color='red',/overplot) ;p = plot(mlo_scr_years,tropical_co2_tseries,thick=2,color='red',xrange=[1938,1965],yrange=[300,325]) ;p = plot(time_early,tropical_co2_early,thick=2,color='blue',/overplot) ;p = plot(mlo_scr_years,co2_detrend,color='blue',thick=2) ;p = plot(mlo_scr_years,tropical_seasonal_co2_tseries,color='red',thick=2,/overplot) ;p = plot(co2_gv_time,ratio,thick=2,color='red') ;p = plot(co2_gv_time,seasonal_plus_trend_co2_ratio_tseries,thick=2,color='orange',/overplot) ;p = plot(co2_gv_time,seasonal_co2_ratio_tseries,thick=2,color='blue',/overplot) ;p = plot(seasonal_co2_ratio_tseries_extend_time,seasonal_co2_ratio_tseries_extend,thick=2,color='green',/overplot) ;p = plot(co2_gv_time,ratio-seasonal_co2_ratio_tseries,thick=2,color='red') ;p = plot(co2_gv_time,yfit_ratio_trend,thick=3,color='orange',/overplot) ;p = plot(seasonal_co2_ratio_tseries_extend_time,yfit_ratio_trend_extend,thick=3,color='green',/overplot) end