

Detecting Ethane over Oil & Gas Regions by CrIS/GXS and Synergies within GeoXO

Colby Francoeur (CU/NOAA)

Daven Henze (CU)

Jian He (NOAA)

Brian McDonald, Program Lead Atmospheric Composition Modeling

Motivation

- Rapid change in oil & gas production in past decade
- Ethane (C_2H_6) is an oil and gas emitted tracer

△NO₂ Tropospheric Column [molec/cm²]

Research Objectives

- (1) Demonstrate ability to retrieve O&G C₂H₆ from Cross-track Infrared Sounder (CrIS)
- (3) Evaluate in conjunction with 2015 O&G field campaign
- (4) Compare CrIS trends with expected production and emission intensity trends
- (5) Identify synergies with other GeoXO instruments

CrIS proxy for GXS to observe key atmospheric composition species

Onboard NOAA-20 since 2017 and Suomi-NPP since 2011

HITRAN Absorptions Between 820 and 825 cm⁻¹

Simulating CrIS with VLIDORT to Isolate Ethane Absorption

Ethane dBT=0.5*(BT(821.25) +BT(823.125) - BT(821.875) - BT(822.5))

NASA Community Long-term Infrared Microwave Coupled Atmospheric Product System (CLIMCAPS) radiances corrected for clouds

CLIMCAPS retrieved variables: Temperature(p), water vapor(p), CO₂(p), CH₄(p), Reflectance, Solar and Satellite Angles

CrIS dBT Compared with WRF-Chem Simulations (2020)

Full year simulations with the Fuel-based Oil & Gas (FOG) inventory from Francoeur et al. (2021)

Aircraft-Derived Fuel-based Oil & Gas Inventory

In-Situ Evaluation of Oil & Gas Ethane during SONGNEX 2015

WRF-Chem simulated with the Fuel-based Oil & Gas (FOG) inventory from Francoeur et al. (2021)

Trend in CrIS Ethane dBT compared w/ Expected Permian Emissions

Trend in Permian O&G methane based on GOSAT by Lu et al. (PNAS, 2023) + TROPOMI

Trend in CrIS Ethane dBT compared w/ Expected Permian Emissions

Trend in Permian O&G methane based on GOSAT by Lu et al. (PNAS, 2023) + TROPOMI

Oil & Gas CH_4 Enhancements Associated with NO_2 (ACX / GXS)

Enhancements in TROPOMI CH_4 also observed where enhancements in NO_2 from drilling and production, distinguishes from other sources of CH_4 (e.g., agriculture) Satellite ratios of NO₂/CH₄ similar to those measured by NOAA P3 over O&G basins

de Gouw et al. Nat. Sci. Rep., 2020

Francoeur et al. ES&T, 2021

GOES ABI Observes Transient Large Super-Emitters (GXI / GXS)

0.4

0.3

0.2

0.1

- 0.0

-0.1

-0.2 Methane

-0.4

buo

Watine-Guiu et al., 2023

GOES ABI methane detection can improve:

- accounting of super-emitter events in bottom-up inventories (intensity + duration)
- methane anomaly detection in near real-time emissions satellite data assimilation system

Summary

- Ethane can potentially be retrieved by CrIS between 820 and 825 cm⁻¹
- Preliminary trend in CrIS ethane dBT consistent with decreasing methane intensity offsetting growth in production
- Higher enhancement in CrIS ethane dBT than in WRF-Chem, consistent with model evaluation with NOAA P3

