

Quantifying extreme methane releases from oil and gas with the GOES Advanced Baseline Imager (ABI)

Algorithm and case studies

Daniel J. Varon (<u>danielvaron@q.harvard.edu</u>)¹, Marc Watine-Guiu², Daniel J. Jacob³

¹ Harvard University School of Engineering and Applied Sciences ² UNEP International Methane Emissions Observatory (IMEO)

NOAA GeoXO ACX Science Team meeting | May 9

United Nations Environment Programme

Marc Watine (IMEO, Harvard)

Current and planned satellite observing system for methane

Launched Planned Canceled

- All instruments are in LEO (GeoCarb canceled)
- Revisit times are at best 1 day (usually > 1 week)
- Observations at 10 am or 1 pm

Cannot quantify the total duration and impact of methane point sources

Sentinel-2

Current and planned satellite observing system for methane

GOES ABI has similar SWIR bands to Sentinel-2, Landsat, etc.

Band 6 (SWIR):

- Samples strong methane absorption lines
- Widening or shifting the band to the right would improve methane sensitivity
- Can perform MBMP retrievals every 5-10 minutes
- 2 km pixels \rightarrow 1 km with GXI

Methods to retrieve methane concentrations from multispectral satellite data

1. Single-band/multi-pass (SBMP) method

True dependence

Infer methane from ΔR from Beer-Lambert law

2. Multi-band/single-pass (MBSP) method

Band-integrated measurement

3. Multi-band/multi-pass (MBMP) method = Difference between MBSP results on different passes (with/without plume)

Demonstration: GOES ABI detects large release observed by TROPOMI over Mexico

TROPOMI Detection 12 May

Pipeline block station

May

El Encino — La Laguna (EELL) pipeline in Durango Transports Permian gas to Mexican markets

Watine-Guiu and Varon et al.

Demonstration: GOES ABI detects large release observed by TROPOMI over Mexico

Cloudy

TROPOMI Detection

20:00

End

19:00

1000

800

600

400

200

1100-1400 t released over 3 hours

Watine-Guiu and Varon et al. (2023)

GOES ABI can quantify variable source rate and total release duration/mass

GOES ABI solves TROPOMI mystery over Indiana/Illinois

Watine-Guiu and Varon et al. (2023)

Watine-Guiu and Varon et al. (2023)

GOES plume detected in the Permian

- ~60 t over 20 min (~170 t h^{-1})
- SNR (in vs. out of plume) ~ 5
- 10-m wind = 5 m s⁻¹ (moderate)
- Moderately complex scene (Permian)
- Infer detection limit < 100 t h^{-1}

GOES ABI can independently detect large point sources

Empirical estimate of minimum detection limit ~ 50 t h⁻¹

GOES ABI minimum detection limit is order tens of t h⁻¹

1950

38 plumes with wide range of release durations, rates, masses:

Duration: 15 min to 6 h

Rate: 50–900 t/h

Release mass: 100–1400 t

Sample of GOES ABI plume detections

0.20	
- 0.15	m ⁻²)
- 0.10	mol 1
- 0.05	cement
- 0.00	Enhanc
0.05	olumn I
0.10	iane Co
0.15	Meth
0.20	

- 0.20	
- 0.15	m ^{−2})
- 0.10	(mol i
- 0.05	ement
- 0.00	Enhanc
0.05	lumn E
0.10	ane Co
0.15	Meth
0.20	

- 0.4

- 0.3 - 0.2 -0.1C Methane C Wethane C

-0.4

Other operational geostationary systems have similar capabilities

