			GU Presen represent former s					
Presentation date	Presenter Name	Title	Presentation Length (CST)	Session Time (CST)	Session Number	Session Title	Presentation Type	Room Number
			MOI	NDAY 12.12.22	1		I	
12.12.22	Lu Xu	Primary Convener	08:00-09:30	08:00-09:30	A12C	Air Quality Trends and challenges in Urban Area I	Oral	McCormick Place, E354b
12.12.22	Jianhao Zhang	On the Conditionality of Marine Low Cloud Albedo Susceptibility: from Meterological conditions to Spatiotemporal Scales	09:00-09:10	09:00-10:30	A12G	Marine Cloud Brightening: Exploring Inadvertent and Deliberate Pertubations to Understand Aerosol- Cloud Interactions I	Oral	McCormick Place, E450a
12.12.22	Carsten Warneke	Characterizing the Impact of Cooking and VCP Emissions on Urban VOCs in Las Vegas and Los Angeles in Prepeartion for AEROMMA 2023	09:13-09:24	09:00-10:30	A12C	Air Quality Trends and challenges in Urban Area I	Oral	McCormick Place, E354b
12.12.22	Steven Brown	Pollutant Emissions and Distributions in the U.S. Urban Southwest: Mobile Measurements of Nitrogen Oxides, Greenhouse Gases and VOCs	09:24-09:35	09:00-10:30	A12C	Air Quality Trends and challenges in Urban Area I	Oral	McCormick Place, E354b
12.12.22	Xiaoli Zhou	Impacts of Mesoscale Cloud Organization on Aerosol-induced Brightness	09:50-10:00	09:00-10:30	A12G	Marine Cloud Brightening: Exploring Inadvertent and Deliberate Pertubations to Understand Aerosol- Cloud Interactions I	Oral	McCormick Place, E3450a
12.12.22	Lu Xu	Primary Convener	10:00-11:30	10:00-11:30	A13B	Air Quality Trends and challenges in Urban Area II	Oral	McCormick Place, E450a
12.12.22	Prasanth Prabhakaran	Impact of Aerosol Perturbation on Marine Stratocumulus Clouds	14:45-18:15	14:45-18:15	A15J	Marine Cloud Brightening: Exploring Inadvertent and Deliberate Pertubations to Understand Aerosol- Cloud Interactions III	Poster	McCormick Hall, Poster Hall, Hall A
	•		TUE	SDAY 12.13.22	•			
12.13.22	Siyuan Wang	Tackle Wildfire Plume Rise using Large Eddy Simulation (LES) and Machine Learning	08:00-09:00	08:00-09:00	A21B	Atmospheric Chemistry in the Wildfire Plume I	Poster	online
12.13.22	Xiaoli Zhou	Observational estimate of stratocumulus susceptibility across timescales	08:00-09:00	08:00-09:00	A21C	Lagrangian and Climatological transitions of Boundary Layer Clouds I	Poster	online
12.13.22	Rebecca Schwantes	Chair	08:00-09:00	08:00-09:00	A21B	Atmospheric Chemistry in the Wildfire Plume I	Poster	online
12.13.22	Ewa Bednarz	Impact of the Laitude of Stratospheric Aerosol Injection on the Southern Annular Mode	09:00-12:30	09:00-12:30	GC22E	Advances in Solar Radiation Modification (SRM) Research III	Poster	McCormick Place, Poster Hall, Hall A
12.13.22	Rebecca Schwantes	Chair	09:00-12:30	09:00-12:30	A22C	Atmospheric Chemistry in the Wildfire Plume II	Poster	McCormick Place, Poster Hall, Hall A

		Secondary Aerosol Formation from				Atmospheric Chemical Mechanisms:		McCormick Place-
12.13.22	Alison Piasecki	Glycol Ethers: Chamber and Modeling Studies	13:45-17:15	13:45-17:15	A25H	Connecting Experiments, Theory, and Modeling II	Poster	Poster Hall, Hall- A
12.13.22	Rebecca Schwantes	Chair	14:45-16:15	14:45-16:15	A25A	Atmospheric Chemistry in the Wildfire Plume III	Oral	McCormick Place, E271ab
12.13.22	Lu Xu	A Chemical Ionization Mass Sprectometer Utilizing Ammonium Ions (NH4+ CIMS) for Measurements of Organic Compounds in the Atmosphere	14:45-18:15	14:45-18:15	A25G	Air Quality Trends and Challenges in Urban Area V	Poster	McCormick Place, Poster Hall, Hall A
12.13.22	Chelsea Stockwell	Evaluating the anthropogenic ozone sensitivity to emissions from Volatile Chemical Products (VCPs) and other non-traditional urban sources in two unique urban centers: Las Vegas and Los Angeles	14:45-18:15	14:45-18:15	A25G	Air Quality Trends and Challenges in Urban Area V	Poster	McCormick Place, Poster Hall, Hall A
12.13.22	Jeff Peischl	Calculating Modified Combustion Efficiency in Biomass Burning Plumes Sampled from Aircraft for Cases with Significant Biosphere Influence	15:15-15:25	14:45-16:15	A25A	Atmospheric Chemistry in the Wildfire Plume III	Oral	McCormick Place, E271ab
12.13.22	Gregory Schill	Size Distributions of Biomass Burning Aerosol as a Function of Age and Comparisions to Models	17:00-17:10	16:45-18:15	A26D	Models, in Situ, and Remote Sensing of Aerosols (MIRA) IV	Oral	McCormick Place, E350
12.13.22	Jake Gristey	Angular Sampling of a Monochromatic, Wide-Field-of-View Camera to Augment Next-Generation Earth Radiation Budget Satellite Observations	17:50-18:00	16:45-18:15	GC26G	The Flows of Energy Through the Climate System I	Oral	McCormick Place, S406b
			WEDN	IESDAY 12.14.22				
12.14.22	Michael Diamond	Earth's Hemisphere Albedo Symmetry by Cloud Type	09:00-12:30	09:00-12:30	GC32M	The Flows of Energy Through the Climate System II	Poster	McCormick Place, Poster Hall, Hall A
12.14.22	Nobuhiro Moteki	Constraining the complex refractive index of black carbon and light absorbing iron oxides according to their complex forwad-scattering amplitude at 633 nm wavelength	09:00-12:30	09:00-12:30	A32I	Light-Absorbing Carbon Aerosol from Observations and Models II	Poster	McCormick Place, Poster Hall, Hall A
12.14.22	Claire Granier	Chair	10:00-11:30	10:00-11:30	A33C	Air Quality in Africa: Observations, Emissions, and Modeling	Oral	McCormick Place - E271ab
12.14.22	Jessica Gilman	Characterizing Modern VOC sources and Chemistry in California's South Coast AirBasin	11:20-11:30	11:00-12:30	A33G	Sources and Fate of Volatile Organic Compounds (VOCs) and Nox in Human-Made Environments III	Oral	McCormick Place, E350
12.14.22	Steven Brown	The Dark Side of Atmospheric Chemistry	11:50-11:55	11:00-12:30	A33D	Atmospheric Sciences 2022 Fellows I	Oral	McCormick Place, E450a
12.14.22	Congmeng Lyu	Developing and Validating Self- Consistent Fossil Fuel Carbon Dioxide and Air Quality Emissions Inventories	13:45-14:45	13:45-14:45	GC34D	Advances in Urban Climate and Biogeochemistry II	Poster	online

12.14.22	Joshua Schwarz	Chair	14:45-16:15	14:45-16:15	A35F	Light-Absorbing Carbon Aerosol from Observations and Models	Oral	McCormick Place, E351
12.14.22	Meng Li	Air Quality and health impact from oil and gas production over the Contiguous United States	15:45-15:55	14:45-16:15	A35E	Emissions of Atmospheric Pollutants from Oil, Gas, and Coal Operations III	Oral	McCormick Place, E253ab
12.14.22	Yunqian Zhu	Hunga-Tunga eruption: stratospheric aerosol evolution in a water-rich plume (invited)	16:45-17:00	16:45-18:15	V36A	Dynamics and Atmospheric Impacts of the January 2022 Hunga Tonga- Hunga Ha'apai Eruption IV	Oral	McCormick Place, S102cd
12.14.22	Caroline Womack	A Lightweight Broadband Cavity- Enahnced Spectrometer for NO ₂ Measurement on Unscrewed Aerial Vehicles	17:37-17:47	16:45-18:15	A36A	Advances in Methods and Technologies for Emission Monitoring and Exposure Assessment to Hazardous Air Pollutants I	Oral	McCormick Place, E450a
			THU	RSDAY 12.15.22				
12.15.22	Claire Granier	Chair	07:00-08:00	07:00-08:00	A41B	Air Quality in Africa: Observations, Emissions, and Modeling	Poster	online
12.15.22	Claire Granier	Chair	08:00-11:30	08:00-11:30	A42O	Air Quality in Africa: Observations, Emissions, and Modeling	Poster	McCormick Place, Poster Hall, Hall A
12.15.22	Elizabeth Asher	The unprecedented rapid aerosol formation from the Hunga Tonga- Hunga Ha'apai eruption (invited)	09:00-09:20	09:00-10:30	A421	General Session: Atmospheric Chemistry & Composition I	Oral	McCormick Place, E450a
12.15.22	Christopher Jernigan	Sulfate and carbonyl sulfide production from aqueous processing of dimethyl sulfide oxidation products	09:00-12:30	09:00-12:30	A42P	Aquatic Aerosols: From Microscale Processes to Impacts on Climate II	Poster	McCormick Place, Poster Hall, Hall A
12.15.22	Daniel Murphy	Coarse-mode organic-sulfate aerosols from evaporating precipitation and novel chemistry	09:20-09:30	09:00-10:30	A42C	Atmospheric Aerosols and Their Interactions with Clouds, Radiation, and Climate III	Oral	McCormick Place, E350
12.15.22	Rudra Pokhrel	Aerosol Hygoscopic Growth and its Dependence on Chemical Composition	09:30-09:40	09:00-10:30	A42C	Atmospheric Aerosols and Their Interactions with Clouds, Radiation, and Climate III	Oral	McCormick Place, E350
12.15.22	Eleanor Waxman	Upper troposphere and Lower Stratosphere Measurements of NO and NO_2 from High-Altitude Aircraft	09:40-09:50	09:00-10:30	A421	General Session: Atmospheric Chemistry & Composition I	Oral	McCormick Place, E450a
12.15.22	Michael Diamond	Surprises in the Study of Smoke Effects on Shallow Convection: Subsidence, Scavenging, and Cellular Organization	09:40-09:50	09:00-10:30	A42G	Convection Processes and Their Environmental and Aerosol Interactions: Theory, Observation, and Modeling I	Oral	McCormick Place, E258
12.15.22	Gregory Frost	Presenter	12:45-13:45	12:45-13:45	TH43A	NOAA's Geostationary Extended Observations (GeoXO) Satellite Atmospheric Compostition Capabilities	Town Hall	McCormick Place, S102cd
12.15.22	Gordon Novak	Observational Constraints of Nox Abundance, Sources, and Cycling in the Remote Marine Boundary Layer	14:45-14:55	13:45-15:15	A45D	Atmospheric Oxidation Capacity Constraints: Laboratory Investigations, Field and Remote Sensing Observations, and Modeling Studies III	Oral	McCormick Place, E270

12.15.22	Maya Abou-Ghanem Michael Lawler	Understanding the Influence of Heavy Fuel Ships on Non-Refractory Vanadium Particles in the Marine Boundary Layer Using Single-Particle Mass Spectrometry Global-scale distribution of sea salt aerosol organic fraction from airborne single particle mass spec trometry	14:45-18:15 17:55-18:05	14:45-18:15 16:45-18:15	A45N A46B	General Session: Atmospheric Chemistry & Composition II Aquatic Aerosols: From Microscale Processes to Impacts on Climate III	Poster Oral	McCormick Place, Poster Hall, Hall A McCormick Place, E270
			FRI	DAY 12.16.22				
12.16.22	Sean Davis	The Role of Tropical Upwelling in Explaining Discrepancies Between Modeled and Oberved Recent Lower Stratospheric Ozeone Trends	09:00-12:30	09:00-12:30	A52Q	Stratospheric and Tropospheric Composition Changes: Observations and Modeling of Special Events, Feedback Mechanisms, and Long- Term Trends II	Poster	McCormick Place, Poster Hall, Hall A
12.16.22	Yue Jia	Quantifying Drift and Bias of Ozone Measurements from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) in Upper Troposphere and Lower Stratosphere (UTLS)	09:00-12:30	09:00-12:30	A52Q	Stratospheric and Tropospheric Composition Changes: Oberservations and Modeling of Special Events, Feedback Mechanisms, and Long-Term Trends II	Poster	McCormick Place, Poster Hall, Hall A
12.16.22	Ewa Bedarz	The impacts of Short-Lived Chlorinated Species on Stratospheric Chlorine Budget and Ozone, and the Role of Transport	09:00-12:30	09:00-12:30	A52Q	Stratospheric and Tropospheric Composition Changes: Oberservations and Modeling of Special Events, Feedback Mechanisms, and Long-Term Trends II	Poster	McCormick Place, Poster Hall, Hall A
12.16.22	Jake Gristey	Inordinately Large Leverage of Aerosol on Surface Solar Irradiance Variability when Co-Occurring with Shallow Cumulus Clouds	09:15-09:25	09:00-10:30	A52G	General Session: Atmospheric Physics, Radiation, Clouds, and Aerosols II	Oral	McCormick Place, E354a
12.16.22	Chuck Brock	Aerosol Optical Properties from High- Resolution Size Distribution Measurements in the Lower Midlatitude Stratosphere	10:15-10:25	09:00-10:30	A52G	General Session: Atmospheric Physics, Radiation, Clouds, and Aerosols II	Oral	McCormick Place, E354a
12.16.22	Chia-Hua Hsu	How well can assimilation of geostationary trace-gas observations constrain Nox emissions in the US?	11:50-12:00		A53A	Advances in the Integrated Global Observing System for Air Quality: Science and Societal Benefit	Oral	McCormick Place, E271ab
12.16.22	Elizabeth Asher	Working towards long endurance stratospheric Portable Optical Particle Spectrometer (POPS) measurements onboard the World View Stratollite	14:45-18:15	14:45-18:15	P55D	Balloons in Earth and Planetary Sciences: Research, Applications, and Emerging Concepts II	Poster	McCormick Place, Poster Hall, Hall A
12.16.22	Takanobu Yamaguchi	Resolving away stratocumulus biases in modern global climate models	14:45-18:15	14:45-18:15	A55S	High-resolution Earth Modeling on Large Supercomputers III	Poster	McCormick Place, Poster Hall, Hall A

12.16.22	Eric Ray	Variability of Long-Lived Trace Gas Transport From the Stratosphere to the Surface	15:30-15:45	14:45-16:15	A55I-05	Stratospheric and Tropospheric Compostition Changes: Observations and Modeling of Special Events, Feedback Mechanisms, and Long- Term Trends III	Oral	McCormick Place, E258
12.16.22	Rebecca Schwantes	MELODIES MONET- A New Community Diagnostic Tool for Evaluating Air Quality and Atmospheric Chemistry Models Against Observations	18:05-18:15	16:45-18:15	A56E-08	General Session: Atmospheric Chemistry & Composition V	Oral	McCormick Place, E354b