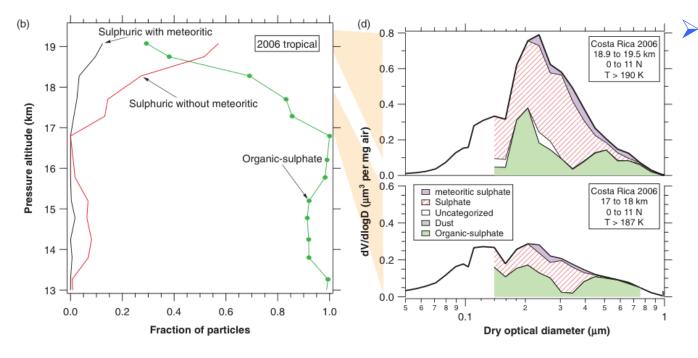


Improving the understanding of the stratospheric aerosol layer Andrew Rollins

- Aerosols in the stratosphere are chemically and radiatively important for climate.
- Significant short term and long term variability has been observed, resulting in observed changes in surface temperature and stratospheric ozone.

CSD research has examined


- Aerosol compositions and sources
- Anthropogenic impact on stratospheric aerosol trends
- Radiative forcing due to stratospheric aerosols

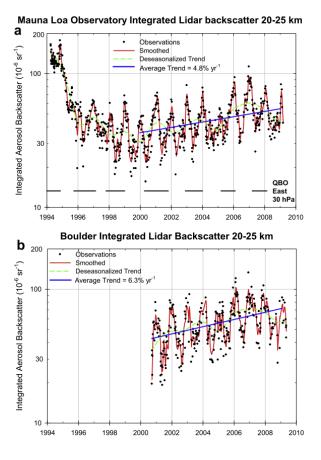
Stratospheric Aerosol Composition

Observations of the chemical composition of stratospheric aerosol particles

D. M. Murphy,^a* K. D. Froyd,^{a,b} J. P. Schwarz^{a,b} and J. C. Wilson^c

Q.J.R.M.S. 2014, DOI: 10.1002/qj2213

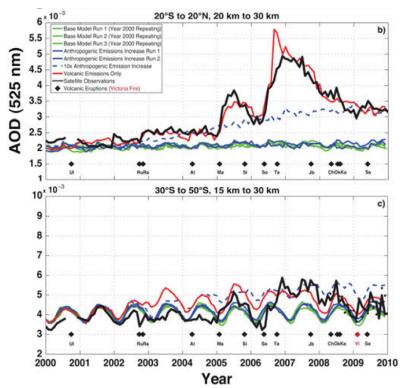
Measurements using the PALMS instrument provide the most complete chemical speciation of lower stratospheric aerosols to date.


Composition and Source? Primarily Sulfate Formed in the Stratosphere

Stratospheric Aerosol Variability

Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado

David Hofmann, 1,2 John Barnes, 1,3 Michael O'Neill, 1,2 Michael Trudeau, 1,2 and Ryan Neely 1,2


Geophys. Res. Lett. 2009

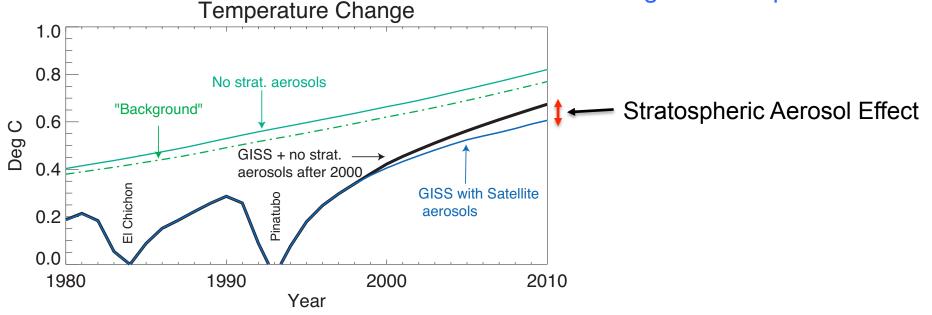
Recent anthropogenic increases in SO₂ from Asia have minimal impact on stratospheric aerosol

R. R. Neely III,^{1,2,3} O. B. Toon,^{1,4} S. Solomon,⁵ J.-P. Vernier,^{6,7} C. Alvarez,^{2,3} J. M. English,⁸ K. H. Rosenlof,² M. J. Mills,⁸ C. G. Bardeen,⁸ J. S. Daniel,² and J. P. Thayer⁹

Geophys. Res. Lett. 2013

Aerosol microphysical/GCM modeling demonstrated that trends in stratospheric aerosol can be mostly explained by small volcanic eruptions.

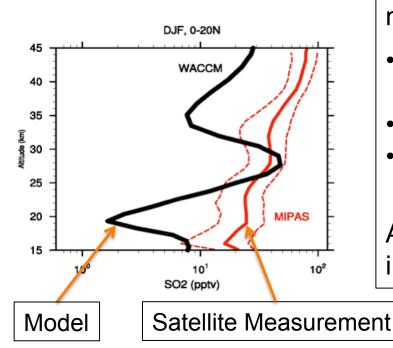
Anthropogenic? Not The Primary Factor


Stratospheric Aerosol Radiative Forcing

Science 2011

The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change

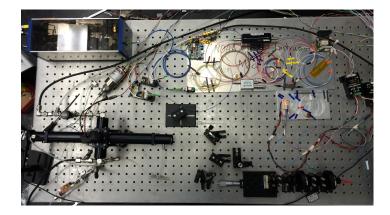
S. Solomon,^{1,2}* J. S. Daniel,¹ R. R. Neely III,^{1,2,5,6} J.-P. Vernier,^{3,4} E. G. Dutton,⁵ L. W. Thomason³


Climate modeling showed that increases in stratospheric aerosol from 2000 counteract ~ 25% of the warming from CO₂ during this time period.

Aerosol Contribution to 2000 – 2010 Global Warming Hiatus?

~25% effect

Ongoing Stratospheric Aerosol and SO₂ Research



Open issues that would benefit from in-situ measurements:

- Chemistry and microphysics of stratospheric sulfur cycling
- Spatial distribution of volcanic SO₂
- Aerosol size distribution as a function of SO₂ input

Answers needed to evaluate climate intervention strategies.

Current CSD development of new in-situ laser induced fluorescence sensor for < 10 ppt SO₂. Field test planned for fall 2015.

