

CSD air quality research overview

Tom Ryerson

Air quality research is key to the NOAA mission

NOAA Next Generation Strategic Plan 2009-2014

long-term WEATHER-READY NATION

objectives

Reduced loss of life, property, and disruption from high-impact events

Improved freshwater resource management

Improved transportation efficiency and safety

Healthy people and communities due to improved air and water quality services

enterprise-wide

SCIENCE AND TECHNOLOGY


objectives

A holistic understanding of the Earth system through research

Accurate and reliable data from sustained and integrated Earth observing systems

An integrated environmental modeling system

NOAA 5-Year Research Plan 2013-2017

Objective:

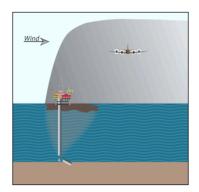
Improve understanding of the changing atmospheric composition of long-lived greenhouse gases and short-lived climate pollutants (e.g., aerosols, tropospheric ozone).

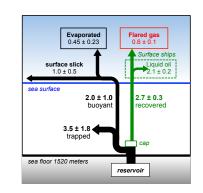
Over the next 5 years, NOAA aims to:

Determine the effects of increasing emissions in different regions of the U.S. (e.g. urban emissions, and oil and natural gas development activities emissions) on climate and regional air chemistry.

CSD air quality research overview

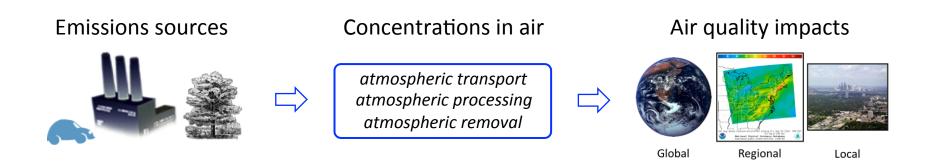
CSD takes an end-to-end approach to air quality research:


Identify • Prioritize scientific focus based on societally-relevant issues


- Develop purpose-built instruments when required
- Deploy in targeted field measurement intensives

Investigate -

- Interpret field data to improve process-level understanding
 - Quantify salient features in controlled laboratory studies
 - Evaluate state of understanding using numerical models
- *Communicate* Distill findings in publications in peer-reviewed literature and in *state-of-science syntheses* provided directly to stakeholders

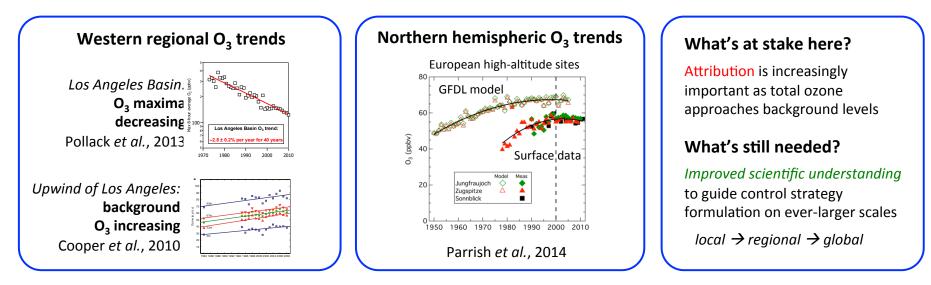

Collaborators and stakeholders (a partial list):

- Industry: petrochemistry, power generation, oil & gas development, agriculture ...
- Other NOAA: all ESRL divisions, other OAR labs, other line offices, NWS ...
- Federal agencies: EPA, U.S. Geological Survey, Bureau of Land Management ...
- State and local governments: in Texas, Nevada, California, Utah, Colorado ...
- numerous University and international partners
- the U.S. public

Today's air quality research topics

Today's session includes CSD work on:

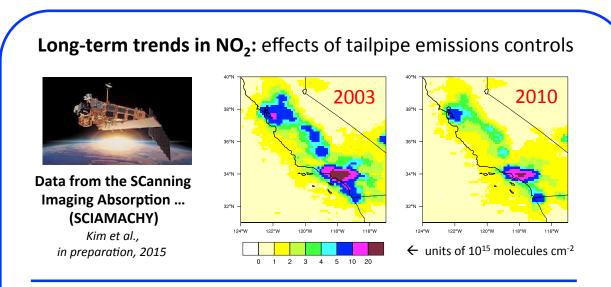
- 1. Transported background O₃ (2 talks)
- 2. Satellite observations (1 talk)
- 3. Atmospheric particles (1 talk)
- 4. Chemistry after dark (1 talk)
- 5. Air quality forecasting (1 talk)
- 6. Impacts of energy development
 - (tomorrow's session)

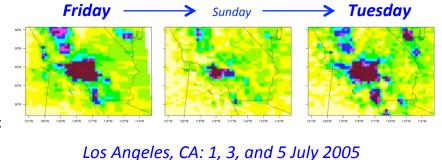

Conclusions from this work inform air quality *and* climate science, by design

Motivation: U.S. National Ambient Air Quality Standard for ozone (O_3) is becoming more stringent over time, even as U.S. emissions decrease

Background ozone – the fraction beyond local control – now contributes significantly to the total surface O₃ burden in many areas

CSD research provides scientific information and analyses needed to:


- Quantify background O_3 levels and trends across the U.S. (*Cooper, 3-1*)
- Diagnose and improve chemistry-climate model O₃ simulations (*Parrish, 3-2*)
- Apportion U.S. background O₃ to specific sources (*Langford*, 5-2)


Motivation: Spaceborne data provide an unparalled spatial and temporal "vantage point"

Short-term changes in NO₂: reduced truck traffic on weekends

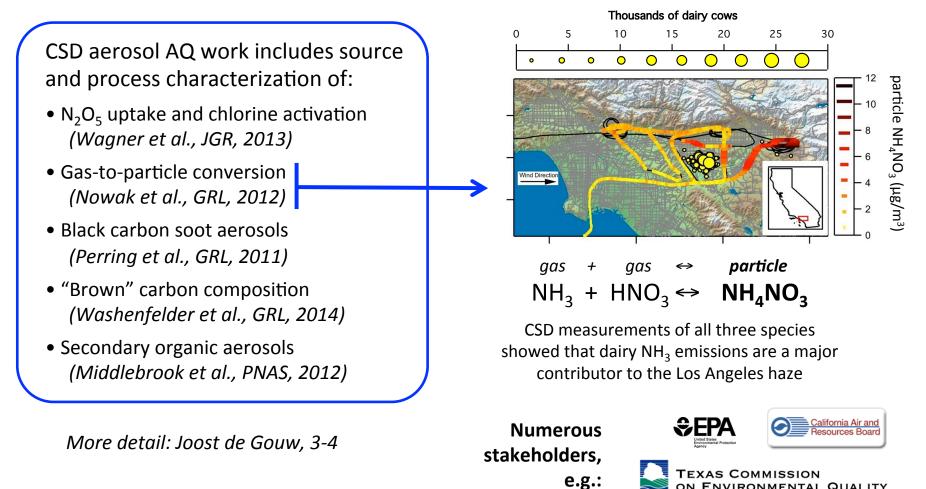
Data from the Ozone Monitoring Instrument (OMI) Kim et al., 2009

- CSD has validated satellite retrievals using chemical models constrained by our field observations.
- CSD developed a method to improve emission inventories using these results for better air quality forecasts.
- CSD synthesizes satellite retrievals, in situ data, and 3-D modeling to quantify AQ trends

(More detail: Si-Wan Kim, 3-3)

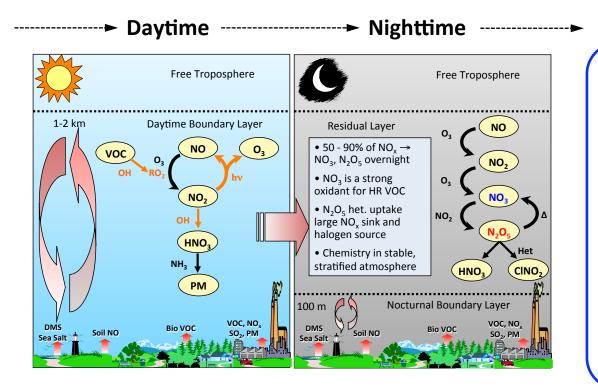
Stakeholders:

TX Commission on Environmental Quality California Air Resources Board U.S. EPA and NASA The European Space Agency



NVIRONMENTAL QUALITY

Motivation: Detailed, location-specific information on atmospheric particles ("aerosols") is vital for policymakers to design effective control strategies


variety of aerosols \rightarrow variety of sources \rightarrow variety of AQ management options

Motivation: Nighttime chemistry influences secondary aerosol formation and ozone on regional and global scales, yet there are few data with which to constrain air quality models

CSD research after dark has:

• Provided unique airborne studies quantifying nighttime residual layer chemical processing by NO₃

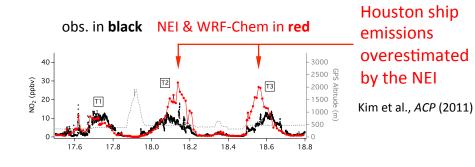
 \bullet Quantified night time rates of $\rm N_2O_5$ uptake to aerosol

- \bullet Discovered key chlorine activation processes mediated by $\rm N_2O_5$
- Assessed nighttime oxidation of natural and anthropogenic volatile organic compounds (VOCs)

More detail: Steve Brown, 3-5

Stakeholders: U.S. EPA regulatory air quality model teams, NOAA 3D air quality modelers, other NOAA laboratories, Federal and state government agencies, University research partners

Topic 5. AQ forecast model improvement

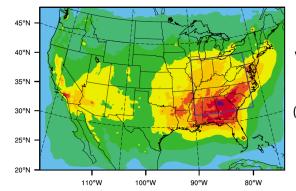

Motivation:

Forecasts challenge the predictive capabilities of 3-D regulatory models to reproduce salient features of the atmospheric chemical and microphysical state \rightarrow assessing health impacts of criteria pollutants

CSD research: Critical evaluation of gridded emissions from EPA National Emissions Inventories (NEIs) as forecast model input

NEI + 3D model \rightarrow compare to observations

Impacts: identified multiple major errors in source sector apportionment in the NEIs, sufficient to confound regulatory strategies based on emissions reductions



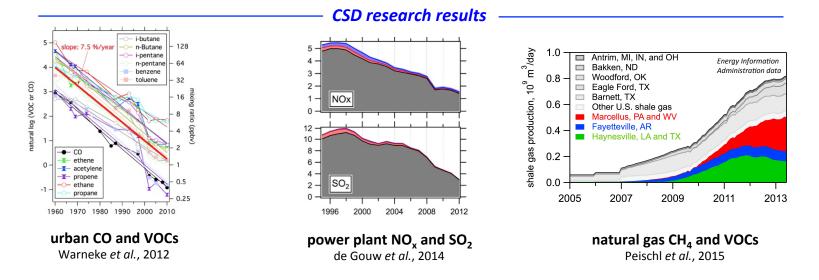
Stakeholders:

NOAA National Weather Service and NESDIS U.S. Air Force, U.S Forest Service, and U.S. Dept. of Energy University collaborators Worldwide WRF-Chem modeling community **CSD research:** Included a *volatility basis set (VBS) formulation* for secondary organic aerosol in the Weather Research and Forecasting with Chemistry (WRF-Chem) model (Ahmadov *et al., 2012*)


Impacts: significant improvement of SOA predictions

Research to applications: the Ahmadov *et al.* VBS formulation is now standard in WRF–Chem

VBS improves SOA prediction fidelity in WRF-Chem (Ahmadov et al., 2012)


More detail: Stu McKeen 3-6 Ravan Ahmadov 4-5

Decades of emissions controls have improved U.S. urban and rural air quality ...

... as emissions and AQ standards evolve, additional timely information will be needed

