

Satellite observations and air quality Si-Wan Kim

NOAA CSD's efforts to use satellite data and chemical transport model

- Derive long-term NO_x change to understand its impact on air quality and climate
- Reduce uncertainties in emission inventory
 Provide accurate input to weather and climate model

CSD's field campaigns and model were critical in validating satellite data.

Satellites observed the impact of motor-vehicle pollution control.

 $NO_{x} \rightarrow 8\%$ per year reduction

Satellite observations of atmospheric composition

Satellite Instrument	Period	Overpass time	Global coverage	Pixel size
GOME (ERS-2)	1995/4-2003/6	10:30 LT	3 days	340 x 40 km ²
SCIAMACHY (ENVISAT)	2002/8-2012/4	10:00 LT	6 days	60 x 30 km ²
OMI (EOS Aura)	2004/7-present	13:30 LT	1 day	27 x 13 km ² (nominal)
GOME-2 (MetOp)	2007/3-present	09:30 LT	1.5 days	80 x 40 km ²

Vertical Column

= Slant Column /Air Mass Factor

Air mass factor is a main source of uncertainty. CSD's model provided trace gas profiles for accurate air mass factor calculation.

GOME = Global Ozone Monitoring Experiment

SCIAMACHY = SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY

OMI = Ozone Monitoring Instrument

ERS = European Remote Sensing satellites

ENVISAT = **ENV**ironmental **SAT**ellite

EOS = Earth Observing System

MetOp = **Met**eorological **Op**erational satellite

Summary of CSD Studies

OMI tropospheric NO₂ columns

NOAA High
Performance
Computing System/
NOAA NCEP Global
Forecast System data

Satellite vs. Model NO₂ columns

- Model results are sampled following satellite orbit and pixels
 - Cloud fraction ≤ 15% scenes only
 - 20 ≤ OMI Pixel Number ≤ 40

Highlights from Texas study

Satellite or aircraft obs. vs. model using NEI05 Dallas – Model and observations agree. Houston - Model overestimates NO_x obs.

- Errors in NO_x emission estimates for industry and shipping in Houston Ship Channel.
- ✓ Underestimated VOC emissions from industries in Houston Ship Channel
- We improved model ozone prediction with updated emissions.

Publication

Kim et al., 2011, Atmospheric Chemistry and Physics

- Emission inventory and model: NOAA/CSD, CIRES
- Satellite data: KNMI (Royal Netherlands Meteorological Institute), NASA, U. of Bremen
- Aircraft data: NOAA/CSD, CIRES and National Center for Atmospheric Research (NCAR), U. of Miami
- Ground data: Chalmers U., Sensor Sense, NOAA/PSD, CIRES

Future research

Local emissions and chemistry (NO_x, volatile organic compound, methane)
 Impacts of global emission changes on U.S. background ozone

Polar-orbiting satellites
Geostationary satellites

NASA/NOAA NESDIS JPSS (CrIS CO & CH₄) and European TROPOMI Sentinel-4 (Europe), GEMS (Asia), TEMPO (U.S.)

Field campaigns NASA Korea field campaign

NASA/NOAA **ATom**

NOAA/CSD US campaigns

JPSS = Joint Polar Satellite System

TROPOMI = **TROPO**spheric **M**onitoring **I**nstrument

ATom = Atmospheric Tomography Mission

GEMS = **G**eostationary **E**nvironmental **M**onitoring **S**pectrometer

TEMPO = Tropospheric Emissions: Monitoring of POllution

CSD's field campaigns and modeling activities in coordination with satellite observations will be critical for advancing science and service.