Identifying atmospheric bioaerosol
Anne Perring

• Atmospheric bioaerosol is composed of airborne bacteria, fungal spores and pollen
• There is currently high uncertainty as to the loadings, transport and effects of these particles in the atmosphere
• CSD research in this field began in 2013 with laboratory evaluations of new instrumentation and ambient measurements in various locations
Atmospheric bioaerosol

- Can have numerous cloud effects including:
 - Temperature of glaciation via ice nucleation (IN) activity
 - Droplet size distribution
 - Onset of precipitation
- Feedback mechanism between the biosphere and atmosphere?
- Impacts for human health

➤ Existing measurements are so sparse that it is difficult to assess the true importance of bioaerosol on local, regional and global scales

Seasonal cycles

Spracklen and Heal 2014
Bioaerosol detection using autofluorescence

- New technique in atmospheric applications
- WIBS counts and sizes particles > 0.8 um
- Working with DMT on improvements and evaluation of WIBS capabilities and limitations.
- Collaboration w/ CU-Boulder to build a reference library

⇒ CSD-developed classification scheme allows good discrimination between bacteria, fungi and pollen based on measured properties

Colors show different response signatures

Hernandez, Perring et al., in prep. 2015
CloudLab Study

- 1st published airborne WIBS measurements
- Wide longitudinal extent and numerous ecosystem types
- Strong trends observed in bioaerosol characteristics and loadings

Flight track, fall 2013

Model-measurement comparison
Model underestimate Good agreement

Bioaerosol size distributions
Larger in the west

Perring et al, 2015

In collaboration with DMT, Leeds, MIT, CU-Boulder
Bioaerosol at Reunion Island

Objectives

- Characterization of southern hemisphere and marine bioaerosol
- La Reunion is downwind of areas of high oceanic productivity
- Ground station with regular nighttime sampling of free tropospheric air
- First ambient comparison of WIBS observations with direct bacteria, spore and pollen counts

Measurements

WIBS: real-time fluorescent aerosol

Collection via impaction: optical microscopy, genetic and component analyses, size-segregated ice nuclei concentrations

In collaboration with CU-Boulder, University of Denver, DMT, Blaise-Pascal Clermont, Meteo France and Universite de la Reunion