Earth's Radiation Budget

Research Publications

Publications acknowledging support from the NOAA ERB Program.


Li, H., G.A. Grell, R. Ahmadov, L. Zhang, S. Sun, J. Schnell, and N. Wang, A simple and realistic aerosol emission approach for use in the Thompson–Eidhammer microphysics scheme in the NOAA UFS Weather Model (version GSL global-24Feb2022), Geophysical Model Development, doi:10.5194/gmd-17-607-2024, 2024.

Prabhakaran, P., F. Hoffmann, and G. Feingold, Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition, Atmospheric Chemistry and Physics, doi:10.5194/acp-24-1919-2024, 2024.


Asher, E., M. Todt, K. Rosenlof, T. Thornberry, R. Gao, G. Taha, P. Walter, S. Alvarez, J. Flynn, S. Davis, S. Evan, J. Brioude, J.-M. Metzger, D.F. Hurst, E. Hall, and K. Xiong, Unexpected rapid aerosol formation in the Hunga Tonga plume, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2219547120, 2023.

Assaf, E., Z. Finewax, P. Marshall, P.R. Veres, J.A. Neuman, and J.B. Burkholder, Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH3SCH2OO Radical Between 314 and 433 K, Journal of Physical Chemistry A, doi:10.1021/acs.jpca.2c09095, 2023.

Bednarz, E.M., A.H. Butler, D. Visioni, Y. Zhang, B. Kravitz, and D.G. MacMartin, Injection strategy - a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering, Atmospheric Chemistry and Physics, doi:10.5194/acp-23-13665-2023, 2023.

Bednarz, E.M., D. Visioni, A.H. Butler, B. Kravitz, D.G. MacMartin, and S. Tilmes, Potential non-linearities in the high latitude circulation and ozone response to stratospheric aerosol injection, Geophysical Research Letters, doi:10.1029/2023GL104726, 2023.

Chun, J.Y., R. Wood, P. Blossey, S.J. Doherty, Microphysical, macrophysical and radiative responses of subtropical marine clouds to aerosol injections, Atmospheric Chemistry and Physics, doi:10.5194/acp-23-1345-2023, 2023.

Evan, S., J. Brioude, K.H. Rosenlof, R.-S. Gao, R.W. Portmann, Y. Zhu, R. Volkamer, C.F. Lee, J.-M. Metzger, K. Lamy, P. Walter, S.L. Alvarez, J.H. Flynn, E. Asher, Michael Todt, S.M. Davis, T. Thornberry, H. Vömel, F.G. Wienhold, R.M. Stauffer, L. Millán, M.L. Santee, L. Froidevaux, and W.G. Read, Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption, Science, doi:10.1126/science.adg2551, 2023.
Editor's Summary: The Hunga Tonga–Hunga Ha'apai eruption of 2022 injected huge amounts of water into the stratosphere and caused a large, rapid loss of ozone. Evan et al. collected in situ data on water, aerosols, and ozone in the volcanic plume and combined them with remote sensing observations to show that heterogeneous chlorine activation on humidified volcanic aerosols was the cause of the massive ozone loss that occurred. This loss was primarily triggered by the synergistic effects of strong humidification, radiative cooling, and added aerosol surface area, and this observation supports the suggestion that excess midlatitude stratospheric water associated with convection changes due to global warming could drive increases in lower stratospheric ozone loss. – H. Jesse Smith

Gao, C. Y., V. Naik, L. W. Horowitz, P. Ginoux, F. Paulot, J. Dunne, M. Mills, V. Aquila, and P. Colarco, Volcanic drivers of stratospheric sulfur in GFDL ESM4, Journal of Advances in Modeling Earth Systems, doi:10.1029/2022MS003532, 2023.

Goddard, P.B., B. Kravitz, D.G. MacMartin, D. Visioni, E.M. Bednarz, and W.R. Lee, Stratospheric aerosol injection can reduce risks to Antarctic ice loss depending on injection location and amount, Journal of Geophysical Research, doi:10.1029/2023JD039434, 2023.

Henry, M., J. Haywood, A. Jones, M. Dalvi, A. Wells, D. Visioni, E. Bednarz, D.G. MacMartin, W. Lee, and M.R. Tye, Comparison of UKESM1 and CESM2 simulations using the same multi-target stratospheric aerosol injection strategy, Atmospheric Chemistry and Physics, doi:10.5194/acp-23-13369-2023, 2023.

Hoffmann, F., and G. Feingold, A note on aerosol processing by droplet collision-coalescence, Geophysical Research Letters, doi:10.1029/2023GL103716, 2023.

Hoffmann, F., F. Glassmeier, T. Yamaguchi, and G. Feingold, On the roles of precipitation and entrainment in stratocumulus transitions between mesoscale states, Journal of Atmospheric Sciences, doi:10.1175/JAS-D-22-0268.1, 2023.

Kopacz, M., V. Breeze, S. Kondragunta, G. Frost, S. Anenberg, L. Bruhwiler, S. Davis, A. da Silva, J. de Gouw, R. Duren, L. Flynn, A. Gaude, M. Geigert, G. Goldman, J. Joiner, B. McDonald, L. Ott, V.-H. Peuch, S.E. Pusede, I. Stajner, C. Seftor, C. Sweeney, L.C. Valin, J. Wang, J. Whetstone, and S. Kallurib, Global atmospheric composition needs from future ultraviolet-visible-near-infrared (UV-Vis-NIR) NOAA satellite instruments, Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-22-0266.1, 2023.

Lee, W.R., D. Visioni, E.M. Bednarz, D.G. MacMartin, B. Kravitz, and S. Tilmes, Quantifying the efficiency of stratospheric aerosol geoengineering at different altitudes, Geophysical Research Letters, doi:10.1029/2023GL104417, 2023.

Mahfouz, N.G.A., S.A. Hill, H. Guo, and Y. Ming, The radiative and cloud responses to sea salt aerosol engineering in GFDL models, Geophysical Research Letters, doi:10.1029/2022GL102340, 2023.

Murphy, D.M., M. Abou-Ghanem, D.J. Cziczo, K.D. Froyd, J. Jacquot, M.J. Lawler, C. Maloney, J.M.C. Plane, M.N. Ross, G.P. Schill, and X. Shen, Metals from spacecraft reentry in stratospheric aerosol particles, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2313374120, 2023.

Prabhakaran, P., F. Hoffmann, and G. Feingold, Evaluation of pulse aerosol forcing on marine stratocumulus clouds in the context of marine cloud brightening, Journal of Atmospheric Sciences, doi:10.1175/JAS-D-22-0207.1, 2023.

Tilmes, S., M.J. Mills, Y. Zhu, C. Bardeen, F. Vitt, P. Yu, D. Fillmore, X. Liu, B. Toon, and T. Deshler, Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2), Geophysical Model Development, doi:10.5194/gmd-16-6087-2023, 2023.

Todt, M.A., E. Asher, E. Hall, P. Cullis, A. Jordan, K. Xiong, D. Hurst, and T. Thornberry, Baseline Balloon Stratospheric Aerosol Profiles (B2SAP) - Systematic measurements of aerosol number density and size, Journal of Geophysical Research, doi:10.1029/2022JD038041, 2023.

Visioni, D., E.M. Bednarz, D.G. MacMartin, B. Kravitz, and P.B. Goddard, The choice of baseline period influences the assessments of the outcomes of Stratospheric Aerosol Injection, Earth's Future, doi:10.1029/2023EF003851, 2023.

Zhou, X., and G. Feingold, Impacts of mesoscale cloud organization on aerosol-induced cloud water adjustment and cloud brightness, Geophysical Research Letters, doi:10.1029/2023GL103417, 2023.


Breitenlechner, M., G.A. Novak, J.A. Neuman, A.W. Rollins, and P.R. Veres, A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry, Atmospheric Measurement Techniques, doi:10.5194/amt-15-1159-2022, 2022.

Christensen, M., A. Gettelman, J. Cermak, G. Dagan, M. Diamond, A. Douglas, G. Feingold, F. Glassmeier, T. Goren, D. Grosvenor, E. Gryspeerdt, R. Kahn, Z. Li, P.-L. Ma, F. Malavelle, I. McCoy, D. McCoy, G. McFarquhar, J. Mülmenstädt, S. Pal, A. Possner, A. Povey, J. Quaas, D. Rosenfeld, A. Schmidt, R. Schrödner, A. Sorooshian, P. Stier, V. Toll, D. Watson-Parris, R. Wood, M. Yang, and T. Yuan, Opportunistic experiments to constrain aerosol effective radiative forcing, Atmospheric Chemistry and Physics, doi:10.5194/acp-22-641-2022, 2022.

Diamond, M.S., A. Gettelman, M. Lebsock, A. McComiskey, L.M. Russell, R. Wood, and G. Feingold, Opinion: To assess marine cloud brightening's technical feasibility, we need to know what to study — and when to stop, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2118379119, 2022.

Diamond, M.S., J.J. Gristey, J.E. Kay, and G. Feingold, Anthropogenic aerosol and cryosphere changes drive Earth's strong but transient clear-sky hemispheric albedo asymmetry, Communications Earth & Environment, doi:10.1038/s43247-022-00546-y, 2022.

Diamond, M.S., P.E. Saide, P. Zuidema, A.S. Ackerman, S.J. Doherty, A.M. Fridlind, H. Gordon, C. Howes, J. Kazil, T. Yamaguchi, J. Zhang, G. Feingold, and R. Wood, Cloud adjustments from large-scale smoke-circulation interactions strongly modulate the southeast Atlantic stratocumulus-to-cumulus transition, Atmospheric Chemistry and Physics, doi:10.5194/acp-22-12113-2022, 2022.

Erfani, E., P. Blossey, R. Wood, H. Mohrmann, S. J. Doherty, M. Wyant, K.-T. O, Simulating aerosol lifecycle impacts on the subtropical stratocumulus-to-cumulus transition using large-eddy simulations, Journal of Geophysical Research, doi:10.1029/2022JD037258, 2022.

Feingold, G., V.P. Ghate, L.M. Russell, et al., DOE-NOAA Marine Cloud Brightening Workshop Report , U.S. Department of Energy and U.S. Department of Commerce NOAA, DOE/SC-0207; NOAA Technical Report OAR ESRL/CSL-1, 2022.

Gryspeerdt, E., F. Glassmeier, G. Feingold, F. Hoffmann, and R.J. Murray-Watson, Observing short timescale cloud development to constrain aerosol-cloud interactions, Atmospheric Chemistry and Physics, doi:10.5194/acp-22-11727-2022, 2022.

Hoffmann, F., B. Mayer, and G. Feingold, A parameterization of interstitial aerosol optical thickness and its application to marine cloud brightening, Journal of Atmospheric Sciences, doi:10.1175/JAS-D-22-0047.1, 2022.

Maloney, C.M., R.W. Portmann, M.N. Ross, and K.H. Rosenlof, The climate and ozone impacts of black carbon emissions from global rocket launches, Journal of Geophysical Research, doi:10.1029/2021JD036373, 2022.


Banerjee, A., A.H. Butler, L.M. Polvani, A. Robock, I.R. Simpson, and L. Sun, Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics , Atmospheric Chemistry and Physics, doi:10.5194/acp-21-6985-2021, 2021.

Glassmeier, F., F. Hoffmann, J.S. Johnson, T. Yamaguchi, K.S. Carslaw, and G. Feingold, Aerosol-cloud-climate cooling overestimated by ship-track data, Science, doi:10.1126/science.abd3980, 2021.

Hoffmann, F., and G. Feingold, Cloud microphysical implications for Marine Cloud Brightening: The importance of the seeded particle size distribution, Journal of Atmospheric Sciences, doi:10.1175/JAS-D-21-0077.1, 2021.

Marshall, P., and J.B. Burkholder, Computational study of the gas-phase reactions of sulfuric acid with OH(2ΠJ), O(3PJ), Cl(2PJ) and O(1D2) radicals, Chemical Physical Letters, doi:10.1016/j.cplett.2021.139203, 2021.

Ming, Yi, Norman G. Loeb, Pu Lin, Zhaoyi Shen, Vaishali Naik, Clare E. Singer, Ryan X. Ward, Fabien Paulot, Zhibo Zhang, Nicolas Bellouin, Larry W. Horowitz, Paul Ginoux, and V. Ramaswamy, Assessing the influence of COVID-19 on the shortwave radiative fluxes over the East Asian Marginal Seas, Geophysical Research Letters, doi:10.1029/2020GL091699, 2021.

Wood, R., Assessing the potential efficacy of marine cloud brightening for cooling Earth using a simple heuristic model, Atmospheric Chemistry and Physics, doi:10.5194/acp-21-14507-2021, 2021.

Zhou, X., J. Zhang, and G. Feingold, Sea surface temperature control on the brightness of marine clouds over the North Atlantic Ocean, Geophysical Research Letters, doi:10.1029/2021GL095896, 2021.