Seminar

An assessment of Earth's climate sensitivity using multiple lines of evidence

Steve Sherwood

Steve Sherwood

University of New South Wales, Australia

Wednesday, 19 August 2020
3:30 pm Mountain Time
webinar only

Abstract

We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density (PDF) for S given all the evidence, including tests of robustness to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6‐3.9 K for our Baseline calculation, and remains within 2.3‐4.5 K under the robustness tests; corresponding 5‐95% ranges are 2.3‐4.7 K, bounded by 2.0‐5.7 K (although such high‐confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent, and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing‐feedback paradigm for interpreting past changes.


Professor Steve Sherwood is an Australian Research Council Laureate Fellow and Deputy Director of the Climate Change Research Center at the University of New South Wales. He studies how the various processes in the atmosphere conspire to establish climate, how these processes might be expected to control the way climate changes, and how the atmosphere will ultimately interact with the oceans and other components of Earth.

ALL Seminar attendees agree not to cite, quote, copy, or distribute material presented without the explicit written consent of the seminar presenter. Any opinions expressed in this seminar are those of the speaker alone and do not necessarily reflect the opinions of NOAA or CSL.